

Lecture 4

Transport of mass, momentum and heat

Transport of mass, momentum and heat

Flow and molecular motion

Mean speed of molecules: microscopic scale

$$
s_i = \left(\frac{8k_B T}{\pi m_i}\right)^{1/2}
$$

 k_B is Boltzmann's constant, m_i is the mass of molecule *i*.

Mean speed of molecules: microscopic scale

Define a mass averaged mean velocity

 \bullet A mixture containing N species, each species has different velocity

- • V_i
	- –**diffusion velocity due to concentration gradient**
	- –**diffusion velo. due to temperature gradient (Soret)**
	- –**diffusion velocity due to pressure gradient**
- \bullet the last two effects can be neglected
- \bullet diffusion by concentration gradient is modeled by Fick's Law

$$
Y_i \overline{V_i} = -D_{iN} \nabla Y_i
$$

Negative sign indicate flux from (Binary diffusivity high concentration to low

A control volume CV for mass conservation

A control volume CV for mass conservation: the boundary is open, species can enter or leave the CV; it can also be formed or consumed in the CV

Law of mass conservation says that *the increase of the total mass of species i in the CV is equal to the net mass flow into the* $CV +$ *the formation rate of the species in the CV*.

 \bullet Transport of species *i* in a mixture of N species, in a control volume ...

- Using Fick's Law one has the transport equation for species *i*
- This equation is not closed without reaction kinetics rate information !

• Summation over all species we have

Momentum conservation

We consider the momentum conservation of the mixture.

The law of momentum conservation is the Newton's second law applied to Fluid Mechanics, which states that *the change of the total momentum in the CV (Fig.4.1) + the exchange of momentum through the boundary of the CV is equal to the forces acting on the boundary + the body forces on the CV*.

Momentum transfer

$$
\frac{\partial \rho \vec{v}}{\partial t} + \nabla \cdot \rho \vec{v} \vec{v} = \nabla \cdot (pI + \tau), \text{ or } \frac{\partial \rho u_i}{\partial t} + \frac{\partial \rho u_i u_j}{\partial x_j} = -\frac{\partial p}{\partial x_i} + \frac{\partial \tau}{\partial x_j} \qquad (i = 1, 2, 3)
$$

or $\rho \frac{\partial \vec{v}}{\partial t} + \rho \vec{v} \cdot \nabla \vec{v} = \nabla \cdot (pI + \tau), \text{ or } \rho \frac{\partial u_i}{\partial t} + \rho u_j \frac{\partial u_i}{\partial x_j} = -\frac{\partial p}{\partial x_i} + \frac{\partial \tau_{ij}}{\partial x_j}$

$$
\tau_{ij} = \mu \left(\frac{\partial u_i}{\partial t} - \frac{\partial u_j}{\partial t} \right) - \frac{2}{\sigma} \delta_{ij} \mu \frac{\partial u_k}{\partial t}
$$

$$
_{ij} = \mu \left(\frac{\partial u_i}{\partial x_j} - \frac{\partial u_j}{\partial x_i} \right) - \frac{2}{3} \delta_{ij} \mu \frac{\partial u_k}{\partial x_k}
$$

Energy conservation

A control volume CV for energy conservation

the boundary is open, species can enter or leave the CV; it can also be formed or consumed in the CV

Total energy change per unit mass

$$
e_{total} = e + \frac{1}{2}v^{2}
$$

= $\sum_{i=1}^{N} Y_{i}e_{i} + \frac{1}{2}v^{2}$
= $\sum_{i=1}^{N} Y_{i}h_{i} - \frac{p}{\rho} + \frac{1}{2}v^{2}$
= $(h - \frac{p}{\rho}) + \frac{1}{2}v^{2}$

The energy flux at an open boundary

- Energy flux due to mass flow of species through the CV boundaries
- Energy flux due to temperature gradient through the CV boundaries
- Energy flux due to concentration gradient at the boundaries (Dufour effect, often negligible)

Energy flux due to flow motion

$$
\sum_{i=1}^{N} \rho_{i} \vec{v}_{i} \left(e_{i} + \frac{1}{2} v^{2} \right) = \sum_{i=1}^{N} \rho Y_{i} \left(\vec{v} + \vec{V}_{i} \right) \left(h_{i} - \frac{p}{\rho} + \frac{1}{2} v^{2} \right)
$$
\n
$$
= \rho \vec{v} \sum_{i=1}^{N} Y_{i} \left(h_{i} - \frac{p}{\rho} + \frac{1}{2} v^{2} \right) + \rho \sum_{i=1}^{N} Y_{i} \vec{V}_{i} \left(h_{i} - \frac{p}{\rho} + \frac{1}{2} v^{2} \right)
$$
\n
$$
= \rho \vec{v} \sum_{i=1}^{N} Y_{i} h_{i} + \rho \vec{v} \sum_{i=1}^{N} Y_{i} \left(-\frac{p}{\rho} + \frac{1}{2} v^{2} \right) + \rho \sum_{i=1}^{N} Y_{i} \vec{V}_{i} h_{i} + \rho \sum_{i=1}^{N} Y_{i} \vec{V}_{i} \left(-\frac{p}{\rho} + \frac{1}{2} v^{2} \right)
$$
\n
$$
= \rho \vec{v} h + \rho \vec{v} \left(-\frac{p}{\rho} + \frac{1}{2} v^{2} \right) + \rho \sum_{i=1}^{N} Y_{i} \vec{V}_{i} h_{i}
$$

Energy flux due to temperature gradients

 $\vec{q} = -\lambda \nabla T$ heat conductivity

Total energy flux

• Through the boundary of a control volume

$$
\vec{q}_{total} = \vec{q} + \rho \vec{v}h + \rho \vec{v} \left(-\frac{p}{\rho} + \frac{1}{2}v^2 \right) + \rho \sum_{i=1}^{N} Y_i \vec{V}_i h_i
$$

\n
$$
\uparrow
$$

\nconduction
\n
$$
\downarrow
$$

\n
$$
\downarrow
$$

work per unit area done to the environment

$(-pI+\tau)\cdot\vec{v}$

The first law of thermodynamics states that the energy increase in a system is equal to the heat transfer from the environment to the system - work done to the system. In differential equation form one can write

$$
\frac{\partial}{\partial t}(\rho e_{total}) + \nabla \cdot \vec{q}_{total} = \dot{Q}_r + \nabla \cdot \left[(-pI + \tau)\cdot \vec{v}\right]
$$

$$
\frac{\partial}{\partial t} \left(\rho h - p + \frac{1}{2} \rho v^2 \right)
$$
\n
$$
+ \nabla \cdot \left(\vec{q} + \rho \vec{v} h + \vec{v} \left(-p + \rho \frac{1}{2} v^2 \right) + \rho \sum_{i=1}^N Y_i \vec{V}_i h_i \right)
$$
\n
$$
= \dot{Q}_r + \nabla \cdot \left[\left(-pI + \tau \right) \cdot \vec{v} \right]
$$

$$
\vec{v} \cdot \left(\rho \frac{\partial \vec{v}}{\partial t} + \rho \vec{v} \cdot \nabla \vec{v} \right) = \vec{v} \cdot \left(\nabla \cdot \left(-pI + \tau \right) \right)
$$
\n
$$
\Rightarrow \rho \frac{\partial \frac{1}{2} v^2}{\partial t} + \rho \vec{v} \cdot \nabla \frac{1}{2} v^2 = \nabla \cdot \left[\left(-pI + \tau \right) \cdot \vec{v} \right] - \left(-pI + \tau \right) \cdot \nabla \vec{v}
$$
\n
$$
\Rightarrow \frac{\partial \frac{1}{2} \rho v^2}{\partial t} + \nabla \cdot \left(\frac{1}{2} \rho \vec{v} v^2 \right) = \nabla \cdot \left[\left(-pI + \tau \right) \cdot \vec{v} \right] - \left(-pI + \tau \right) \cdot \nabla \vec{v}
$$

Transport of mass, momentum and heat

$$
\frac{\partial}{\partial t} (\rho h - p) + \nabla \cdot \left(\vec{q} + \rho \vec{v} h + \vec{v} (-p) + \rho \sum_{i=1}^{N} Y_i \vec{V}_i h_i \right)
$$
\n
$$
= \dot{Q}_r + (-pI + \tau) : \nabla \vec{v}
$$
\n
$$
\frac{D}{Dt} = \frac{\partial}{\partial t} + \vec{v} \cdot \nabla = \frac{\partial}{\partial t} + u_j \frac{\partial}{\partial x_j}
$$
\n
$$
\rho \frac{Dh}{Dt} - \frac{Dp}{Dt} = -\nabla \cdot \left(\vec{q} + \rho \sum_{i=1}^{N} Y_i \vec{V}_i h_i \right) + \dot{Q}_r + \tau : \nabla \vec{v}
$$

$$
\rho \frac{Dh}{Dt} - \frac{Dp}{Dt} = \nabla \cdot \left(\rho \alpha \nabla h - \rho \alpha \sum_{i=1}^{N} \left(1 - \frac{1}{Le_i} \right) h_i \nabla Y_i \right) + \dot{Q}_r + \tau : \nabla \vec{v}
$$

Lewis number

$$
Le_i \equiv \frac{\alpha}{D_i} = \frac{\lambda}{\rho c_p D_i}
$$

$$
\rho \frac{Dh}{Dt} - \frac{Dp}{Dt} = \nabla \cdot \left(\rho \alpha \nabla h - \rho \alpha \sum_{i=1}^{N} \left(1 - \frac{1}{Le_i} \right) h_i \nabla Y_i \right) + \dot{Q}_r + \tau : \nabla \vec{v}
$$
\n
$$
\rho \frac{Dh}{Dt} = \nabla \cdot \left(\rho \alpha \nabla h \right)
$$

$$
\rho c_p \frac{DT}{Dt} - \frac{Dp}{Dt}
$$
\n
$$
= \nabla \cdot (\lambda \nabla T) + \sum_{i=1}^{N} \left(\rho D_i c_{pi} \nabla Y_i \cdot \nabla T \right) - \dot{\omega}_i h_i + \dot{Q}_r + \tau : \nabla \vec{v}
$$
\n
$$
\rho c_p \frac{DT}{Dt} = \nabla \cdot (\lambda \nabla T) + \sum_{i=1}^{N} \left(\rho D_i c_{pi} \nabla Y_i \cdot \nabla T \right) - \dot{\omega}_i h_i
$$

Energy transfer

- in species transport equations, there is a source term due to chemical reaction, why there is no source term due to chemical reactions in the energy equation?
- chemical energy is released to thermal energy, however the system's energy is not changed due to chemical reactions !
- If energy equation is expressed as temperature transport equation, one should have the reaction source term

Summary of governing equations

- Unkowns
	- – 3 velocity components
	- pressure
	- – temperature or enthalpy
	- –N species
	- –density
- total unknowns
	- N+6
- Governing equations
	- **Links of the Company** continuity 1
	- **Links of the Common** N-S equations 3
	- **Links of the Company** temperature or enthalpy 1
	- and the state of the equation of state 1
	- and the state of the species transport N
- total equations – N+6

Simplified governing equations (unity Lewis number)

Momentum: $\frac{J}{x_i} = 0$ u j $+\frac{\nu \mu}{\nu} =$ $\widehat{\mathscr{O}}$ $\partial \rho$ $\widehat{\mathscr{O}}$ $\partial \rho$ *t j ij j* $U \Lambda_i$ i *i i i i i j* x_i *cx p x* u ; u *t u* \widehat{O} $\frac{\partial p}{\partial x_i} + \frac{\partial}{\partial x_i}$ $\frac{\partial u_i u_j}{\partial x_j} = -\frac{\partial}{\partial x_j}$ $\frac{\rho u_i}{\partial t} + \frac{\partial}{\partial t}$ $\partial \rho u_i$ ο $\rho u_i u_j$ δρ οτ Pr $\frac{d}{dx} = \frac{\partial}{\partial x_i} \left(\frac{\mu}{\text{Pr}} \frac{\partial n}{\partial x_j} \right) + Q_r$ $\frac{h}{h} + \frac{\partial \rho u_i h}{\partial h} = \frac{\partial}{\partial h} \left(\frac{\mu}{R} \frac{\partial h}{\partial h} \right) + \dot{Q}$ \int *x*^{*x*}*x x* **Pr** *xxx* $\frac{\partial \rho h}{\partial t} + \frac{\partial \rho u_i h}{\partial t} = \frac{\partial}{\partial t} \left(\frac{\mu}{\rho} \frac{\partial h}{\partial t} \right)$ $\frac{\partial \rho}{\partial t} + \frac{\partial \rho u_i}{\partial x_i} = \frac{\partial}{\partial x_j} \left(\frac{\mu}{\text{Pr}} \frac{\partial n}{\partial x_j} \right) + \mathcal{L}$ \int ^{*i*}</sup> \int ^{*j*} *i j j* $i \int u \mu$ *i i x Y* x_i ∂x_i *Sc* $u_i Y_i$ *t* $\frac{\partial Y_i}{\partial t} + \frac{\partial \rho u_j Y_i}{\partial x_j} = \frac{\partial}{\partial x_j} \left(\frac{\mu}{Sc} \frac{\partial Y_i}{\partial x_j} \right) + \omega_i$ μ ∂ $\widehat{\mathscr{O}}$ $\widehat{\mathscr{O}}$ $\widehat{\mathscr{O}}$ $∂ρ$ $\widehat{\mathscr{O}}$ ∂ $\frac{\partial \rho Y_i}{\partial t} + \frac{\partial \rho u_j Y_i}{\partial x_j} = \frac{\partial}{\partial x_j} \left(\frac{\mu}{Sc} \frac{\partial Y_i}{\partial x_j} \right) +$ = $=R_0\rho T\sum$ *i ⁱ i W* Equation of state: $p = R_0 \rho T \sum_{i} \frac{Y_i}{W_i}$ Mass: Energy: Species:

Chemical reaction rates

Reactions:
\n
$$
\sum_{i=1}^{N} v_{ij} M_i \Leftrightarrow \sum_{i=1}^{N} v_{ij} M_i \qquad j = 1,...,L
$$
\n**Reaction**
\n**rate:**
\n
$$
\omega_i \equiv \frac{dC_i}{dt} = \sum_{j=1}^{L} (v_{ij} - v_{ij}) g_j
$$
\n
$$
q_j = k_{jj} \prod_{i=1}^{N} C_i^{v_{ij}} - k_{jb} \prod_{i=1}^{N} C_i^{v_{ij}}
$$

A comparison of mass diffusivity, heat conductivity and viscosity

Using kinetic theory it can be shown (cf. Turns book):

$$
D_{ij} = \frac{1}{3}c\xi = \frac{2}{3} \left(\frac{k_B^3 T}{\pi^3 m_{ij}}\right)^{1/2} \frac{T}{\sigma^2 P} \propto T^{3/2} P^{-1}
$$

Mean diffusion coefficient for species *i* in the mixture

$$
D_i = \frac{1 - Y_i}{\sum_{j=1, j \neq i}^{N} X_j / D_{ij}} \propto T^{3/2} P^{-1}
$$

A comparison of mass diffusivity, heat conductivity and viscosity

Using kinetic theory it can be shown (cf. Turns book):

$$
k = \frac{1}{2}k_B \left(\frac{n}{V}\right) c \xi = \left(\frac{k_B^3 T}{\pi^3 m \sigma^4}\right)^{1/2} \propto T^{1/2}
$$

Thermal diffusion coefficient

 ${}^{\mathcal{C}}p$ *k* ρ α \equiv

$$
\text{Lewis number } L e_i \equiv \frac{k}{\rho c_p D_i} = \frac{\alpha}{D_i}, \quad \therefore D_i = \frac{\alpha}{L e_i}
$$

A comparison of mass diffusivity, heat conductivity and viscosity

Using kinetic theory it can be shown:

$$
\mu = \frac{1}{3}\rho c \xi = \frac{2}{3} \left(\frac{mk_B T}{\pi^3 \sigma^4}\right)^{1/2} \propto T^{1/2}
$$

Prandtl number

$$
Pr \equiv \frac{\mu}{\rho \alpha} = \frac{v}{\alpha}
$$

Schmidt number

$$
Sc_i \equiv \frac{\mu}{D_i}
$$