lunduniversity.lu.se

Electrical and Information Technology

Faculty of Engineering, LTH

Denna sida på svenska This page in English

Kalendarium

Thesis defence: Integrated millimeter Wave CMOS Power Amplifiers for 5G Systems

Christian Elgaard
Christian Elgaard

Disputation

From: 2024-04-19 09:15 to 13:00
Place: E-house, E:1406.
Contact: christian [dot] elgaard [at] ericsson [dot] com


Christian Elgaard defends his thesis: Integrated millimeter Wave CMOS Power Amplifiers for 5G Systems.

This dissertation focuses on millimeter-wave power amplifiers built using a common and inexpensive silicon-based technology known as CMOS, for fifth-generation mobile systems and beyond. It comprises four scientific publications based on three measured power amplifiers with increasing complexity, where the third one essentially includes a complete transmitter and parts of a receiver. The third circuit is measured with a signal where the power amplifier sends a whopping 9.6 Gbit/s, equivalent to downloading about an hour's worth of video in just one second. To achieve high-output signal transmission at such high data rates without distorting it to the point of making it difficult or even impossible for the receiver to decode the digital bits while consuming as little power as possible, a Doherty amplifier combined with adaptive bias is used. The Doherty amplifier, invented in 1936, has the special property of consuming very little power when amplifying signals with highly varying amplitudes, a characteristic of 5G (and 6G) signals. To save power, the Doherty amplifier has two amplifiers cooperating: one is on all the time (the main amplifier), while the other (the auxiliary amplifier) is only on at high amplitudes, reducing consumption. However, constructing a Doherty amplifier at such high frequencies as millimeter waves poses a significant challenge, making it interesting from a research perspective. To ensure that the transistors amplify the signal in the desired way, it's necessary to set an appropriate operating point, known as biasing the transistors. Normally, a constant operating point is used, but with adaptive bias, the transistors' operating points are adjusted as the signal's amplitude changes. As demonstrated by the research in the dissertation, using a Doherty amplifier with adaptive bias for the auxiliary amplifier is a good way to mitigate the problems that arise when a power amplifier needs to handle the complex signals of 5G and future mobile systems in a power-efficient manner. The fourth article examines and explains the theoretical aspects of how an adaptive bias signal should be designed to work optimally with the auxiliary amplifier, and the article also contains a detailed description of the construction of a circuit capable of creating such an adaptive bias signal and thus able to change the operating point for the auxiliary amplifier very quickly, i.e., with high bandwidth. The circuit creates the adaptive bias signal by first extracting amplitude information from the Doherty amplifier's input signal. An important theoretical result is that an ideal adaptive bias signal should then be constructed through a nonlinear transfer function from the amplitude information. Measurements and simulations show that the circuit effectively achieves this.
 

Link to thesis i LU Research Portal:

https://portal.research.lu.se/sv/publications/integrated-millimeter-wave-cmos-power-amplifiers-for-5g-systems

Zoom link. Zoom ID: 63926548525.