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A theory for quadrupolar spin relaxation of counterions in polyelectrolyte solutions is presented. The theory features a 
self-consistent mean-field cell description of the equilibrium distribution and the translational diffusion of the counterions. 
The residual electric field gradient (efg) is modeled as a short-ranged step-function perturbation. Complete randomization 
of the efg requires that a counterion diffuse from one polyion to another. This can be a very slow process, which then causes 
the efg correlation function to exhibit a (nearly exponential) long-time tail and the relaxation behavior to be dominated by 
the zero-frequency spectral density, J(0) .  The central result of the theory is a simple expression for J(O), with the residual 
efg as the only freely adjustable parameter. The theory accounts quantitatively for recent 23Na+ transverse relaxation data 
from solutions of poly(acry1ate) and poly(styrenesu1fonate) as a function of polyion concentration, polyion charge density, 
and concentration of added salt. The resulting value (ca. 70 kHz) for the residual efg is consistent with results from quadrupolar 
line splittings. The invariance of the residual efg with respect to polyion dilution and protonation indicates that it is caused 
mainly by local short-range interactions. Under the experimental conditions considered, J(0)  appears to be unaffected by 
any changes in solution structure. In particular, it is not necessary to invoke a finite polyion persistence length or a finite 
orientational correlation between the polyions. 

Introduction 
The decisive factor that governs the behavior of polyelectrolyte 

solutions is the long-range Coulomb interaction which couples the 
polyions and the counterions.' As a consequence, the highly 
charged polyions tend to be distributed as far apart from each 
other as possible, while the counterions accumulate in the 
neighborhood of each polyion. These features are embodied in 
the commonly adopted cell according to which the so- 
lution is divided into electroneutral cells of cylindrical symmetry, 
each containing a centrally located polyion along with its coun- 
terions and its share of any added salt. The counterion distribution 
within the cell is usually described within the Poisson-Boltzmann 
(PB) approximation, which, in the salt-free case, leads to an 
analytic solution:* The PB cell model approach has been used 
extensively to predict thermodynamic properties of polyelectrolyte 
solutions, usually resulting in excellent agreement with experi- 
mental data3,' and with computer simulations.8 

While those equilibrium properties of polyelectrolyte solutions 
that depend mainly on the distribution of the counterions (and 
any added salt) are fairly well understood, much fundamental 
theoretical work remains to be done on the conformation and 
distribution of the polyions in polyelectrolyte  solution^.^ The 
major problem in constructing a general theory of the structure 
of polyelectrolyte solutions is the multitude of different length 
scales required to describe a macroscopically isotropic system 
composed of entities with one effectively infinite dimension and 
subject to long-range forces. One of these length scales, the 
electrostatic persistence length, has recently been treated at the 
PB level of approximation for an isolated polyion chain.lOJ1 The 
structure of (salt-free) polyelectrolyte solutions at  finite polyion 
concentration, however, remains a subject of considerable un- 
certainty and controver~y.'~-'~ It is only at  very low polyion 

concentrations that one can confidently say something about the 
solution structure; if the concentration is so low that the cell 
diameter is much larger than the polyion contour length or its 
persistence length, then there should be no orientational correlation 
between polyions. At high concentrations (of order lo-' mono- 
molar) there exist small-angle X-ray'4-16 and n e u t r ~ n ' ~ , ~ ' - ' ~  
scattering data that have been taken as indicative of a periodic 
ordering of the polyions. However, this interpretation may need 
revision.69 In the present paper we shall be dealing with data 
obtained in the intermediate concentration range ( 104-10-1 
monomolar), which is essentially terra incognita as regards solution 
structure. 

The technique of nuclear magnetic resonance (NMR) is po- 
tentially rich in information about equilibrium as well as dynamic 
properties of polyelectrolyte solutions. Under appropriately chosen 
experimental conditions, counterion nuclear spin relaxation can 
be used to study many facets of these intriguing systems, such 
as the distribution and translational diffusion of the counterions, 
intra- and interpolyion solution structure, and polyion dynamics. 
While this makes NMR an extremely powerful and versatile tool 
for studying polyelectrolyte solutions, it also calls for great care 
in the interpretation of experimental data. 

We shall discuss two fundamentally different models for the 
interpretation of counterion spin relaxation: the site-exchange 
model and the mean-field model. (A similar interpretational 
dichotomy appears in connection with other transport properties, 
e.g., counterion self-diffusion.) According to the site-exchange 
model, a counterion can reside in either of a number of classes 
of equivalent discrete sites. The simplest, and most commonly 
adopted, version is the two-site-exchange model with a bound site, 
characterized by a stoichiometric association constant and a mean 
residence time (or a dissociation rate constant), and a free site 
with the properties of a dilute solution of a simple electrolyte. The 
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site-exchange model is thus phrased in chemical terms and makes 
no explicit reference to the long-ranged forces involved. In 
particular, it treats all counterions residing in the free site as if 
they were dynamically equivalent. The counterion translational 
diffusion is thus replaced by a Markovian random walk in a 
discrete-state space. In the mean-field model, on the other hand, 
a counterion undergoes continuous translational diffusion in the 
mean field generated by the polyion and the counterions (and any 
added salt). The long-range Coulomb interaction is thus explicitly 
included in the model and no chemical association equilibrium 
is invoked. Instead, the polyion is characterized by its dimensions 
and charge distribution, usually modeled as a straight cylinder 
with a uniform surface charge density. In the dynamical de- 
scription the polyion appears as a hard reflecting surface devoid 
of specific interactions. The counterion residence time at the 
polyion surface (as a t  any other point) is thus infinitesimal. 

The site-exchange model has been used extensively to interpret 
N M R  relaxation data from ions in solutions of charged macro- 
molecules.z”z In many cases, the ion-macromolecule interaction 
is known to involve dehydration and direct coordination to specific 
liganding groups on the macromolecule. The site-exchange model 
should then provide an accurate description. (However, if the 
macromolecule carries a large net charge, the incorporation in 
the model of reencounter effectsz3 may alter the interpretation 
of the deduced residence times.) 

In the case of typical linear polyelectrolytes, such as poly- 
(acrylate) (PAA) or poly(styrenesu1fonate) (PSS), site binding 
(in the sense just described) does not seem to occur-at least not 
for monovalent counterions. Accordingly, counterion spin re- 
laxation data from such systems have usually been interpreted 
in terms of a hybrid version of the site-exchange and mean-field 
models, which we shall call the state-exchange model. In the 
two-state-exchange model one retains the discrete-state description 
of the counterion dynamics, while the counterion distribution is 
regarded as being determined by the balance between long-range 
Coulombic and entropic forces (as, for example, in the PB ap- 
proximation) rather than by the principle of mass action.24 The 
bound state is then taken to comprise those counterions that reside 
within a certain distance from the polyion surface. This distance 
is usually chosen approximately as the diameter of a hydrated 
counterion, in accordance with the short range of the perturbation 
(characterized by the magnitude and the symmetry of the electric 
field gradient) that induces spin relaxation in quadrupolar 
counterion nuclei.25 The observation, through line splittings in 
counterion N M R  spectra, that the number of so-defined bound 
counterions is nearly invariant with respect to dilution, addition 
of salt, and changes in temperature provides unequivocal evidence 
in favor of a PB or ion condensation description (rather than a 
mass-action model) of the distribution of monovalent counterions 
in lyotropic liquid crystals (the interfacial structure of which is 
locally quite similar to that of linear polyelectrolytes).26 On the 
other hand, the dynamic assumptions in the two-state-exchange 
model are physically unsound and must be replaced. This will 
be our main task in the present paper. 

Until quite recently, counterion spin relaxation studies of po- 
lyelectrolyte solutions were confined to concentratedz7 systems. 
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polyion concentration is above or below ca. 0.1 monomol dm-). The definitions 
of various concentration regimes (dilute, semidilute, etc.), as they occur in 
polymer theory,’* will not be used. 

The general observation (excepting atypical polyelectrolytes such 
as poly(methacry1ate) a t  low charge densities) is one of equal 
longtidudinal and transverse relaxation rates, indicative of short 
correlation times (for the fluctuating field gradient) as in simple 
electrolyte solutions. Under such conditions it is not possible to 
obtain detailed dynamic information about the processes that 
induce spin relaxation. The interpretation of the data has therefore 
emphasized static quantities, such as the fraction bound coun- 
te r ioqZ4 and simplifying (often crude) assumptions about the 
dynamics have been introduced. 

Improved N M R  instrumentation has now made dilute polye- 
lectrolyte solutions accessible to counterion relaxation studies. In 
an important contribution,z8 Levij, de Bleijser, and Leyte (hereafter 
referred to as LBL) reported extensive 23Na counterion relaxation 
data from dilute solutions of poly(acry1ate) and poly(styrene- 
sulfonate). The results are dramatically different from those 
obtained from concentrated solutions. For dilute solutions the 
longitudinal and transverse relaxation rates are no longer equal 
and the transverse relaxation is biexponential. (Similar findings 
have been recorded independently, albeit in less detail, by othemZ9) 
The general indication from the relaxation data is one of a long 
(>>lo4 s) correlation time which increases sharply upon dilution.” 
This behavior, which appears to be common to dilute solutions 
of all linear polyelectrolytes,28 clearly demonstrates the deficiencies 
in the dynamic description of the two-state-exchange model. As 
yet, no theoretical explanation of these intriguing observations 
has been offered, except for a suggestionz8 that they are governed 
by the electrostatic persistence length of the polyion. 

In the following we present a theory of counterion spin relax- 
ation in dilute polyelectrolyte solutions, which gives a quantitative 
account of LBL’s experimental data. In its present form, the 
theory is designed primarily to rationalize the anomalous relaxation 
behavior reported by LBL; Le., it is a theory for the effect on the 
relaxation of the long-time tail of the total correlation function. 
(In a subsequent paper30 we shall generalize the theory to include 
also the effect of the short-time behavior of the corelation func- 
tion.) The theory is based on what may be termed a two-state 
mean-field model, which treats the equilibrium distribution and 
the dynamics of the counterions on an equal footing, recognizing 
that both are determined by the long-range Coulomb forces op- 
erating in polyelectrolyte solutions. 

In the following section, we describe the physical model that 
we shall use to represent a polyelectrolyte solution and the in- 
teractions and dynamics therein that induce counterion spin re- 
laxation. On the basis of this model, we then develop a theory 
for the spectral density function that determines the relaxation 
rates. Considerable simplification results from the assumption 
of time-scale separation for the molecular motions which govern 
the spectral density. The general formalism of this so-called 
two-step approximation is presented in Appendix B. The extension 
of the theory to include orientational correlation between neigh- 
boring polyions is given in Appendix C. We then apply the theory 
to LBL‘s 23Na relaxation data.28 In this connection we report some 
new data, the experimental conditions and methods of data ac- 
quisition and reduction of which are detailed in Appendix D. We 
discuss the possible effect on the counterion spin relaxation of a 
finite polyion persistence length and, in Appendix E, derive a 
correlation function for combined axial and radial counterion 
diffusion. Finally, we summarize the main conclusions of this work 
and indicate how the present theory may be extended. 

Model 
We consider counterion nuclear spins which are relaxed through 

the interaction of the nuclear electric quadrupole moment, eQ, 
with the fluctuating electric field gradient (efg) tensor, V(r), 
present at the nucleus.25 This is the case for nearly all monatomic 
counterions of interest. We shall be concerned only with relaxation 
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in the motional narowing limit and in the absence of static 
quadrupolar perturbations. The relaxation behavior is then 
governed by the equilibrium time correlation function, G(t ) ,  of 
the fluctuating efgZ5 

where F$ is the m = 0 spherical component, expressed in a lab- 
fixed frame (L), of the second-rank irreducible efg tensor, defined 
as in ref 31. In order to derive an expression for G(t) ,  we require 
a model which accounts for the origin of the efg and which 
identifies the molecular motions reponsible for its time dependence. 

In a dilute solution of a symmetric electrolyte such as NaCl, 
the efg a: the nucleus of a monatomic ion is due to instantaneous 
asymmetries in the surrounding ~ o l v e n t . ~ * - ~ ~  (By "asymmetry" 
we imply a point symmetry lower than 2 X C3.) Recent Monte 
Carlo sir nu la ti on^^^^^^ show that the efg is produced almost entirely 
by the water molecules in the primary coordination shell. 

In a polyelectrolyte solution most counterions reside in the 
immediate vicinity of a polyion. Because of the highly asymmetric 
charge distribution between the species, the efg experienced by 
a counterion is expected to differ from that in a dilute solution 
of a symmetric electrolyte. There are two main differences. The 
first one is the direct contribution to the efg from the surrounding 
free charges associated with the polyion and with the other 
counterions. Since the efg from a point charge falls off with 
distance as F3, the overwhelming contribution comes from a few 
nearby charges. To describe this contribution accurately it is 
therefore essential to include the discrete nature of the polyion 
charge distribution, the electrostatic pair correlation between the 
counterions, and the finite size of the counterions. Several au- 
t h o r ~ ~ ~ - ~ ~  have, nevertheless, evaluated the counterion efg within 
the primitive-model-PB approximation, in which the discrete 
polyion charges are replaced by a uniform surface charge density 
and in which the counterions are treated as uncorrelated point 
charges.40 That this is indeed an invalid procedure is demon- 
strated by the findingZ6 that the PB equation predicts quadrupolar 
line splittings (for counterions in macroscopically anisotropic 
systems) which are an order of magnitude smaller than those 
observed. Even more serious is the fact that the primitive-mod- 
el-PB approximation predicts an efg tensor with a vanishing 
component along the polyion axis.41 In a real polyelectrolyte 
solution, with discrete correlated charges, the charge distribution 
surrounding a counterion is not translationally invariant along 
the polyion axis. As we shall see this is a crucial point, since even 
a small axial efg component can dominate the counterion tran- 
sverse relaxation provided that it fluctuates sufficiently slowly. 
[The PB approximation as applied to polyion systems yields a 
potential which is averaged over the positions of all N counterions 
in the system. However, to obtain the average efg experienced 
by a counterion one must average the instantaneous efg only over 
the positions of the remaining N - 1 counterions. This could be 
achieved by using a pair correlation function derived from the 
modified Poisson-Boltzmann eq~at ion .~ '  That it is indeed in- 
consistent to identify the average (or root-mean-square) counterion 
efg with the second derivative of the PB potential is evident also 
from the fact that in such a procedure one has to assume the 
simultaneous validity of Laplace's and Poisson's  equation^.^'] 
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The second main difference, as regards the counterion efg, 
between a polyelectrolyte solution and a dilute solution of a 
symmetric electrolyte is due to the perturbation of the primary 
hydration sheath around the counterion brought about by the 
polyion and nearby counterions. The free charges act here mainly 
through their associated electric field, rather than through their 
efg. However, non-Coulombic interactions with the polyion also 
contribute significantly.26 

From what has been said, it is clear that an accurate theoretical 
evaluation of the counterion efg is a formidable task. (At present, 
the most promising approach to this problem is by way of computer 
simulations.) In the model presented here, we shall therefore 
regard the counterion efg as a free parameter. We do, however, 
assume that the perturbation of the efg is short-ranged, so that 
beyond a distance 6, of the order of a hydrated counterion diam- 
eter, from the polyion surface, the efg is essentially that of a dilute 
solution of a symmetric electrolyte. Due to the inherent local 
anisotropy of the molecular interactions within the perturbed 
region, the counterion efg principal axis system is not randomly 
oriented with respect to the polyion. As a consequence, complete 
randomization of the efg orientation cannot be achieved by the 
motions in the primary hydration sheath alone, as is the case in 
a dilute solution of a symmetric electrolyte. Additional motions 
are then required to average to zero the residual efg, which remains 
after partial averaging by motions in the hydration  heath.^',^^ 
As we shall see, the only motion that needs to be invoked in order 
to explain the anomalous relaxation in dilute polyelectrolyte so- 
lutions is the translational diffusion of the mobile counterions 
relative to the more sluggish polyions. 

The behavior of the counterions will be described in terms of 
the cylindrical-cell If the polyion contour length 

L, = NI ( 2 )  
where N is the degree of polymerization and 1 is the monomer 
length projected onto the polyion axis, is much greater than the 
cell radius, b, then we may neglect end effects and 

(3)  
where n, is the monomer number density. At the outset we also 
neglect any effects of a finite polyion persistence length; Le., we 
take the cell to be an infinitely long, straight cylinder. (However, 
in a subsequent section we shall discuss end effects as well as 
persistence length effects.) 

The interactions within the cell will be described in a primitive 
model, where the counterions (and any added salt) are treated 
as point charges immersed in a dielectric continuum of relative 
permittivity E ,  and where the polyion is represented by a cylinder 
of radius a with a uniform surface charge density 

u = -ae/(2nal) (4) 
where -ae is the average charge per monomer unit. Neglecting 
correlations between the mobile ions, we then obtain the PB 
equation for the mean potential, J.(r), in the cell 

- ~ o c , -  - i r [  r- d$)] = Cz,eni(b) exp [ -- zi~rF] (sa) 

The sum runs over all species of mobile ions of valency zi and local 
number density ni(r) 3 ni(b) exp[-zieJ.(r)/(kBq]. The boundary 
conditions are 

By convention we set $(b)  0. Equation 5 can be solved ana- 
lytically if only counterions are present,"6 but in the presence of 
added salt one must resort to numerical methods. 
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TABLE I: Typical Magnitudes of Some Properties of Dilute Polyelectrolyte Solutionso 
c,/(mol dm-3) a b/nm -z&(a)/(kB T )  P 7,,11/ns TdnS 

10-1 1 4.598 5.298 0.4761 17.30 0.2321 
10-2 1 14.54 7.734 0.4245 270.0 0.2476 
10-3 1 45.98 10.11 0.4027 341 1 0.2547 
1 Q-4 1 145.4 12.46 0.3913 39150 0.2586 
10-2 0.5 14.54 5.716 0.1779 115.8 0.1423 
10-2 0 14.54 0 0.0036 26.34 0.06013 

"All results pertain to monovalent counterions in the absence of added salt. Parameter values were as follows: T = 298.15 K, cr = 78.54, 
m2 s-*, I = 0.25 nm, a = 0.5 nm, 6 = 0.5 nm. The calculations are based on eq 3 and A5-A7. The mean counterion residence D = 1 X 

time in the perturbed region, T ~ ,  is given by eq 13 if b is replaced by a + 6 as the upper integration limits. 

Figure I. Neighboring polyions are orientationally correlated; Le., the 
relative orientation of their cylinder axes (zc, and zcz) is nonrandom. 
Each polyion of radius a is centered in a cylindrical cell of radius b. 
Local motions in the hydration sheath partially average the efg (principal 
frame F) at a counterion nucleus. The local environment in the perturbed 
region ( a  < r < a + 6) is anisotropic so that the residual efg is nonran- 
domly oriented with respect to the surface normal (q,). 

Two regions within the cell are defined by the dividing surface 
r = a + 6, where 6 is the previously discussed range of the po- 
lyion-induced counterion efg. The number of counterions, of the 
species whose N M R  spectrum is being observed (superscript *), 
that reside within the perturbed region (a < r < a + 6) is (per 
monomer) 

2 d  x'+'dr rn*(r) 

Hence, we get for the fraction, P, of such counterions that are 
in the perturbed region 

P =  2aln*(b) *x'+ 'dr  r exp[ -7-4 z*e*(r) 
(6) a / z *  + ab21ns 

where ns* is the average number density of counterions (of the 
species whose N M R  spectrum is being observed) which derive 
from added salt. Figure 1 illustrates some of the cell parameters 
introduced above. 

It may be thought that the applicability of the cylindrical-cell 
model is restricted to hexagonal arrays of linear polyelectrolytes. 
However, it applies under far more general conditions. This is 
because a polyelectrolyte is a highly asymmetric electrolyte in 
which a counterion essentially experiences only the nearest polyion, 
the other ones being effectively screened. This assertion may be 
quantified by using the solution to the PB equation for a system 
containing several p ~ l y i o n s . ~ ~  We therefore believe that the 
cylindrical-cell model is appropriate over a wide range of polyion 
concentrations, even though the orientational correlation between 
neighboring polyions may vary within this concentration range. 
The normalized orientational pair correlation function for 
neighboring polyions (or cells) may be expanded in a Legendre 
basis 

m 

(7) 

where BcIc, is the angle between two neighboring polyion axes (cf. 
Figure l), P, is the Ith-degree Legendre polynomial, and S, is the 
corresponding order parameter 
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The counterion spin relaxation is affected only by the second-rank 
order parameter 

S 2  = &(3(C0SZ k , C J  - 1) (8b) 

which we regard as a free parameter. 
As in the description of the counterion distribution by the PB 

equation (eq 5a), we neglect all effects of correlations among the 
mobile ions on their dynamic behavior. Accordingly, we assume 
that the counterion translational diffusion is governed by the 
Smoluchowski mean-field diffusion equatio1-1~~3~~ 

Heref*(r,t)r dr is the probability of finding a "tagged" counterion 
to within dr of r a t  time t ,  subject to the appropriate initial 
condition. D* is the counterion diffusion coefficient (as measured 
in a dilute solution of a symmetric electrolyte) and @*(r) is the 
reduced PB potential 

As discussed in the following section, the long-time behavior 
of the correlation function is governed by the radial diffusion. 
Hence, the axial and azimuthal coordinates do not appear in eq 
9. To further simplify the diffusion problem, we introduce what 
we call the dynamic cell approximation (DCA). According to 
the DCA, a counterion loses all correlation with a given polyion 
as soon as it reaches the cell boundary at  r = b. (The accuracy 
of this approximation is discussed in the following section.) We 
impose a reflecting boundary at  the polyion surface 

while the cell boundary is taken, according to the DCA, to be 
absorbing 

f*(W = 0 (1lb) 

In the next section we show that the long-time behavior of the 
correlation function is determined by the mean residence time of 
a counterion in the cell, defined as 

b 
T , , ~  = J m d t s  dr rf*(r,t) 

with the initial position averaged over the counterion equilibrium 
distribution. Direct integration of eq 9, using the boundary 
conditions 11, leads to4' 

In the absence of added salt, one can obtain analytical expressions 
for $(r), P, and T,,~~. These are given in Appendix A. To give 

(45) M. von Smoluchowski, Ann. Phys. (Berlin), 48, 1103 (1915). 
(46) S. Chandrasekhar, Rev. Mod. Phys., 15, 1 (1943). 
(47) N. S.  Goel and N. Richter-Dyn, "Stochastic Models in Biology", 

Academic Press, New York, 1974. 
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TABLE 19: Definition ob Coordinate Systems 
coordinate system symbol definition of z axis 

laboratory frame L external static magnetic field 
ceJi frame C 
director frame D local normal to cylindrical polyion surface 
field gradient frame F 

local tangent to cell (and polyion) symmetry axis 

principal axis corresponding to largest component of diagonal counterion efg tensor 

an indication of the magnitudes of these quantities, we present 
in Table I; results of some sample calculations. 

TbOHp 
Spin reiaxation rates are in general determined by the values 

of the spectral density function, J(w),  at a few discrete frequencies. 
Neglecting effects of second-order frequency we need 
to retain only the real part of the spectral density 

J ( u )  = (eQ/h)2Jmdt cos (ut) G(t)  (14) 

with the efg correlation function G(t)  defined in eq 1. In order 
to separate contributions to J(u)  from various molecular degrees 
of freedom, we introduce four coordinate systems as defined in 
Table I1 and in Figure 1. 

With the aid of the second-rank Wigner rotation matrix,51 
D2(Q), we now transform the efg component @ ( t ) ,  appearing in 
eq 1, from the L frame to its principal F frame, via the C and 
D frames 

@(O = 
~ ~ ~ D b [ Q L C ( t ) l  %m([%D(t)l @t~k~~[nDF(t)l c f t [ r ( t ) l  
m m'm" 

(15) 
where the sums run from -2 to +2. By means of these trans- 
formations, we have factorized the time dependence in G(t) into 
four sets of stochastic variables: the three sets of Euler angles 
Qc(t), Q,,(t), and &(t) specifying the instantaneous relative 
orientation of the respective frames and the discrete-state variable 
I'(t). The random variable r has the effect of "switching on" 
different functions depending on the instantaneous position of the 
counterion: inside (r  < a + 6) or outside (r > a + 6) the perturbed 
region. 

The cor rek t i~n  function (1) is obtained by averaging over a 
joint equilibrium probability density and over a joint transition 
probability density. The former may be written 

The QLc factorization follows because all interactions within the 
cell are independent of its orientation. (Molecular degrees of 
freedom do not interact significantly with the external magnetic 
and gravitational fields.) The QcD factorization is a consequence 
of the independence of the radial and azimuthal counterion dis- 
tributions. However, the RDF distribution depends on the state 
variable T' as indicated in eq 16. From the overall isotropy of the 
system, it follows that 

f ( S Z L C ~ Q C D ~ ~ D F , r )  = f (QLC)  f(SCD) f(QDF'lr) w) (16) 

A Q L C )  = l/(8r2) (17) 

(18) 
From the cylindrical symmetry of the cell it follows that 

,fQQCD) = (1/2r)6(c0s OCD) f($D) 

'Lo is the angle (.rr/2) between the zc and zD axes. 
*o sirnr> "1 the form of the joint transition probability 
US? to consider the characteristic time scales of 
el. modulate the stochastic variables. We shall 

nd-over-end reorientation of the polyion (and 
I) as well as the translational diffusion of a 
tb- more or less curved polyion axis are both 

LC to remain essentially constant during the 

(48) R. Paapko, A. Baram, and Z. Luz, Mol. Phys., 27, 1345 (1974). 
(49) I G. Werbelow and A. 6. Marshall, J .  Magn. Reson., 43, 443 

'1981). 
(2' -0. We5sllund and H. Wennerstrom, J .  Magn. Reson., 50, 451 

Brink and @. R. Satchler, "Angular Momentum", 2nd ed., 
$E., Oxford, 1968. 

a i  th 
&e' 

- 

0 0.2 OX 0.6 08 1 

v b  
Figure 2. Some characteristics of the cylindrical-cell model of polye- 
lectrolyte solutions. Shown as functions of the reduced radial cell co- 
ordinate, r/b (the polyion surface is at r / b  = a/b = 0.0344), are (1) the 
mean electrostatic potential, in the reduced form 1 - $(r) /$(a) ,  (2) the 
probability, P(r-.a), that a counterion, which starts at r,  reaches the 
polyion surface (r = a)  before it reaches the cell boundary ( r  = b), and 
(3) the mean time, r(u-+r), for a counterion, initially at the polyion 
surface, to reach the radial coordinate r for the first time, reduced by the 
corresponding time ~(u+b) .  The solid curves were computed with the 
following parameter values: T = 298.15 K, cr = 78.54, z = 1, 01 = 1, I 
= 0.25 nm, a = 0.50 nm, c, = 0.01 mol dm-3 and no added salt. The 
dashed curves correspond to free diffusion ( z  = 0). 

time that a given counterion remains in the cell. (These restrictions 
are lifted in the next section, where we show that polyion rotation 
can be important in dilute solutions Qf short polyions.) The only 
way in which QLc can change is then by radial translational 
diffusion of the counterion over the cell boundary (r = b) and into 
another cell with a different orientation. The time scale for 
fluctuations in QLC is thus set by the mean residence time of a 
counterion in the cell, T ~ ~ ~ ~ ,  as defined by eq 12. 

The fluctuations in the Euler angles QDF are due to motions 
in the primary hydration sheath and to other molecular motions 
occurring in the immediate neighborhood of the counterion. These 
motions proceed on a time scale of p i c o ~ e c o n d s . ~ ~ ~ ~ ~  The Euler 
angles QcD are modulated by azimuthal translational diffusion 
of the counterion around the polyion on a time scale given roughly 
by (a  + 6)2/(40), Le., 10-10-10-9 s. (Reorientation of the entire 
polyion around its axis is much slower and can safely be neglected.) 

Finally, we consider the time scale for fluctuations in the state 
variable I?. We do this with reference to Figure 2, in which we 
have plotted, for a typical case, the mean potential in the cell, the 
mean time, r(a-tr), taken for a counterion, starting at the polyion 
surface, to reach the radial coordinate r for the first time, and 
the reencounter probability, P(r-.a), Le., the probability that a 
counterion, starting at r, reaches the polyion surface (r = a)  before 
it reaches the cell boundary (r = b). The latter quantity is given 
by4I 

The curves in Figure 2 reveal an important, and perhaps 
counterintuitive, fact: although counterions in the neighborhood 
of a polyion experience a very strong inward force (cf. the slope 
of the potential curve), they make substantial radial excursions 
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on a very short time scale. (Cf. also the last column of Table I.) 
The high reencounter probability near the polyion implies that 
a counterion makes many such excursions before it reaches the 
cell boundary and eventually escapes. In the free-diffusion case, 
reencounters occur less frequently so that a particle starting at 
r = a reaches any r > a faster than it would have done in the 
presence of the PB potential. 

Let P(t) be the probability of finding a counterion in the 
perturbed region a < r < a + 6 at  time t ,  given that it was there 
initially. Obviously, P(t--+m) = P,  as given by eq 6. Now the 
state variable r(t) is randomized on the time scale on which P(t) 
evolves toward P. But from Figure 2 we can infer that the rel- 
atively fast radial excursions within the inner part of the cell suffice 
to bring P(t) very close to its equilibrium value P. A quasi- 
steadystate situation then obtains within the cell, with the “tagged” 
counterions (those that started out in the perturbed state) being 
nearly Boltzmann distributed when they begin to slowly leak out 
of the cell through the absorbing boundary at r = b. The fluc- 
tuations in r(t) thus occur essentially on a time scale which is 
short compared to the characteristic time, T ~ ~ ~ ~ ,  for fluctuations 
in QLc. This steady-state approximation, i.e., the r-QLc time-scale 
separation, is very accurate when the counterion distribution is 
distinctly inhomogeneo~s .~~ 

From what has been said it is clear that, in a dilute polyelec- 
trolyte solution, QLc fluctuates much more slowly than the re- 
maining stochastic variables QcD, QDF, and r. As a consequence 
of this time-scale separation, the joint transition probability density 
factorizes as 

where a superscript zero denotes the initial value of the respective 
variable. 

Because of the time-scale separation, it is convenient to divide e(t) into two parts as 

with 

The averaging in eq 21c over the rapidly fluctuating variables 
ensures that es(t) contains only the slow time dependence as- 
sociated with QLc. 

Because of the statistical independence of the fast and slow 
variables, as expressed by eq 20, the cross-correlations between 
Gf and vanish and the correlation function 1 may be written 
as the following sum 

G ( t )  = Gf(t) + GS(0 (22) 
where the two terms involve c&t) and kfjs(t), respectively. 
Equation 22, which is derived more formally in Appendix B, 
constitutes the vital part of the two-step model, previously de- 
veloped for use in connection with spin relaxation of ions43 and 
water3’ in colloidal and polyelectrolyte systems. 

If eq 22 is inserted into eq 14, we obtain the corresponding 
decomposition of the spectral density 

J(w) = Jf(W) + JAW) (23) 
Now quadrupolar relaxation rates are determined by the values 
of J (w)  at w = 0, wo, and 2w0, where wo is the Larmor frequency.25 
Typically, wo is 10s-109 rad s-l. It is clear from eq 14 that J(w) 
is frequency dependent only around frequencies such that 1/w 
falls on the time scale where G(t)  decays. We shall assume that 
all the fast motions are fast relative to l /wo,  whereas the slow 
motions are slow relative to l/wo. Then 

Jf(0) = Jf(w0) = J f ( 2 ~ 0 )  5 Jf ( 2 4 4  
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J,(wo) = Js(2w,) = 0 (24c) 

In the remainder of this section we shall be concerned only with 

When @(t )  from eq 15 is inserted into eq 21c, we obtain 
JS(0). 

%s(~) = CDk[nLC(t)l SdQCDf(QCD) DknlQCD) 

CP(I‘) r S d ~ ~ F f ( Q D F , r ) ~ D ~ ’ m ’ ( Q D F )  mn ct (r)  (25) 

It follows from eq 18 that 

SdnCDf(%D) %m(QCD) = 6mO(&(QCD)) (26) 

with (Dt0(Qc~))  = dtO(7r/2) = -1/2. Hence, we may write 

%SO) = -72@o[Q,c(t>lCp(r) W )  (27) r 

where we have introduced the residual efg, V(F),  that remains 
after statistical averaging over QDF and 4D in state r 

(28) 
If there were at  least threefold symmetry with respect to the 
director, as for a planar interface, then only the m = 0 term would 
survive in eq 28. In the unperturbed state ( r  > a + 6), f(QDF) 
= 1/(8r2) by definition, so that P = 0. Hence, only the perturbed 
state contributes to the sum in eq 27 and we get 

%At) = -7zP~&o[flLc(t)l (29) 

where P is the fraction of counterions in the perturbed state, as 
given by eq 6, and where the subscript 6 denotes the perturbed 
state. 

When cs(t) from eq 29 is inserted into eq 24b, we get 

where we have defined an averaged quadrupole coupling con- 
~ t a n t ~ ~ , ~  

and a reduced correlation function 

6 s ( t )  E (GO[QLC(O)I Dio[fl~c(t)I) / ( [Go(Q~c)l*)  (32) 

The extra factor 1/5 in eq 30 comes from ( [ D : o ( Q ~ ~ ) ] 2 )  = 
by virtue of eq 17 and the orthogonality of the D  element^.^' 

Now we have assumed that the only way that QLc can change 
is by translational diffusion of the counterion from one polyion 
to another. If the polyions are completely uncorrelated in ori- 
entatisn, Le., if the polyion order parameter s, = 0 (cf. eq 8b), 
then G,(t) is simply the probability that the counterion at time 
t resides in the same cell as it did initially. If we, furthercore, 
invoke the DCA, as described in the previous section, then G,(t) 
is given by the probability that the counterion has not yet reached 
the cell boundary, i.e. 

b 
6’,(t) = S dr ry(r , t )  (33) 

a 

wheref*(r,t) is the solution to eq 9 subject to the boundary 
conditions 11. On combining eq 12, 30, and 33, we arrive at the 
simple result 

J s ( O )  = (3/40)(f‘Xa)Z~,,~~ (34) 

Note that, since only the zero-frequency spectral density is re- 
quired, we do not have to make any-assumptions about the 
functional form (e.g., exponential) of G,(t) .  

Even for highly charged polyions, the PB potential is quite flat 
in the neighborhood of the midpoint between two polyions (cf. 
Figure 2). Diffusional trajectories whereby a counterion crosses 
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the cell boundary at  r = b and shortly thereafter recrosses it on 
its return to the original cell should therefore occur quite fre- 
quently. The neglect of such trajectories is clearly a deficiency 
in the DCA. By studying the behavior of the spectral density as 
the absorbing boundary is successively displaced toward larger 
r (outside the cell boundary), it can be shown30 that such cell 
boundary recrossings contribute almost exactly a factor of 2 to 
Js(0).  For highly charged polyions, this factor of 2 is associated 
almost exclusively with the increased correlation time for radial 
counterion diffusion. Introducing this ad hoc improvement of the 
DCA into eq 34, we may write 

JB(0) = (3/40)(PjiA27rad (35) 

7rad E 27-11 (36) 

where we have defined 

with 7,11 defined, as before, be eq 12. 

correlation between the polyions. The result is 
In Appendix C we generalize eq 35 to include orientational 

(37) Js(0) = (3/40)(P%)'7rad/(l - s 2 )  

where S2 is defined by eq 8b. The final result for the spectral 
density values required to calculate the relaxation rates now follows 
from eq 23, 24, and 37 

J(0)  = Jf + (3/40)(P%)'7rad/(l - s 2 )  (38a) 

J(w0) = J(2wo) = Jf (38b) 

Applications 
We are now ready to confront the model and the theory, as 

presented in the two previous sections, with experimental fact. 
For this purpose, we use the extensive data on 23Na trahsverse 
relaxation in dilute polyelectrolyte sdlutions reported by LBL.2s 
For a nucleus, like 23Na, with spin quantum number I = 3/2, the 
transverse magnetization decays, in general, biexponentially with 
relaxation rates given by25,52 

(39a) 

(39b) 

R2' = (2r2/3)[J(O) + J ( w ~ ) ]  

R2- = (2n2/3)[J(oo) + J ( ~ w o ) ]  

and with the spectral density function, J ( w ) ,  defined by eq 14. 
For very long correlation times, as might possibly occur in ex- 
tremely dilute salt-free polyelectrolyte solutions, these expressions 
are no longer valid. The failure of eq 39a is due to the breakdown 
of the motional narrowing conditionz5 (047, << 1, where wQ is the 
quadrupolar interaction, in frequency units, fluctuating with a 
correlation time 7c), while eq 39b should include a contribution 
from a second-order frequency shift.50 

The intriguing and hitherto not satisfactorily explained coun- 
terion relaxation behavior in polyelectrolyte solutions is contained 
in the difference 

AR 2 -  = R2" - Rz- = (2r2/3)[J(O) - J(2wo)l (40) 

On substitution of eq 38, we get 

A R 2  = (r2/20)p2(jis)27rad/(1 - S 2 )  (41) 

(52) P. S.  Hubbard, J .  Chem. Phys., 53,985 (1970). 
(53) G. Lindblom, B. Lindman, and G. J. T. Tiddy, J.  Am. Chem. SOC., 

100, 2299 (1978). 
(54) P. Ekwall, L. Mandell, and K. Fontell, Acta Chem. Scand., 22, 1543 

(1968). 
(55) I. D. Leigh, M. P. McDonald, R. M. Wood, G. J. T. Tiddy, and M. 

A. Trevethan, J .  Chem. Soc., Faraday Trans. I ,  11, 2867 (1981). 
(56) F. Husson, H. Mustacchi, and V. Luzzati, Acta Crystallogr., 13, 668 

(1 960). 
(57) H. Gustavsson, G. Lindblom, B. Lindman, N. 0. Persson, and H. 

Wennerstrom in "Liquid Crystals and Ordered Fluids" Vol. 11, J. F. Johnson 
and R. S.  Porter, Eds., Plenum Press, New York, 1974. 

(58) K. Fontell, J.  Colloid ZnterJace Sei., 44, 318 (1973). 
(59) H. T. Edzes, A. Rupprecht, and H. J. C. Berendsen, Biochem. Bio- 

phys. Res. Commun., 46, 790 (1972). 

TABLE 111: Parameter Values Used in All Calculations 
T = 294.45 K 
cr = 79.88 
D = 1.22 X 
I = 0.25 nm 
6 = 0.50 nm 
a(NaPAA) = 0.30 nm 
a(NaPSS)  = 0.50 nm 

mz s-* 

100 1 "; 
c -  

0 -  

-20 -15 -10 - 0 5  0 
log Ic,/mol 

Figure 3. ARz vs. polyelectrolyte monomolarity for NaPAA, N = 27780, 
a = 0.89 (0) and a = 0.49 (W). The experimental data were taken from 
ref 28 and the curves were calculated from eq 41 with z6(l - = 
71 kHz and the parameter values of Table 111. 

0 0 2  0 4  0 6  0 8  1 
a 

Figure 4. AR2 vs. degree of dissociation for NaPAA, N = 27780, c, = 
3.03 X lo-* mol dm-3. The experimental data were taken from ref 28 
and the curve was calculated from eq 41 with z6(l - S2)-'l2 = 71 kHz 
and the parameter values of Table 111. 

In the absence of added salt, P and T , ~ ~  are given analytically by 
eq A6 and A7, respectively. In the presence of added salt, these 
quantities are obtained from eq 6 and 13 together with the nu- 
merical solution of the Poisson-Boltzmann e q ~ a t i o n . ~  

We stress that eq 41 contains only one adjustable parameter, 
viz., the composite quantity ga( 1 - S2)-1/2. As independent es- 
timates of xa are available (vide infra), it is thus in principle 
possible to extract from the relaxation data some information about 
polyelectrolyte solution structure in terms of the second-rank 
orientational order parameter S2. The parameter values used in 
all calculations of P and T~~~~ are listed in Table 111. The use of 
different values for these parameters, within physically reasonable 
limits (d=0.005 nm for 1, *0.2 nm for a and 6 ) ,  might change the 
deduced gs( 1 - S2)-1/2 by up to 30%, whereas the goodness of the 
fits would remain virtually unaffected. The parameters in Table 
111 are all treated as constants with respect to variations in polyion 
concentration and charge density and in added-salt concentration. 

Figures 3 and 4 show the fits of eq 41 to the NaPAA data. Only 
one parameter, xs( 1 - Sz)-1/2 = 71 kHz, was adjusted in computing 
the three theoretical curves, which all fall within the experimental 
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Figure 5. ARz vs. polyelectrolyte monomolarity for NaPSS, N = 1070, 
a = 0.81. The experimental data were taken from ref 28 and the curve 
was calculated from eq 41 with jia(l - Sz)-’/2 = 71 kHz and the param- 
eter values of Table 111. 
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Figure 6. ARz vs. NaCl molarity for NaPSS, N = 3155, a = 0.70, c,  
= 4.9 X lo-’ drn-’. The experimental data were taken from ref 28 and 
the curve was calculated from eq 41 with ,&(I - = 88 kHz and 
the parameter values of Table 111. 

uncertainty as quoted by LBL.Zs Similar agreement was obtained 
for the dilution experiment on NaPSS (degree of polymerization, 
N = 1070), as shown in Figure 5. As in the case of NaPAA, 
the adjusted parameter value is &( 1 - S2)-lI2 = 71 kHz. 

Figure 6 shows the fit to the data form the NaC1-addition 
experiment on NaPSS (N  = 31554, which yielded the somewhat 
higher value za( 1 - S2)-1/2 = 88 kHz. Again the agreement is 
quantitative, except for the point at zero salt concentration. We 
believe that this disagreement is due to an experimental error. 
This point, with R2+ = 290 s-l, is by far the largest relaxation 
rate reported by LBL.28 For such rapid decays, instrumental 
factors (e.g., spectrometer dead time) might produce systematic 
errors in the measurements. Furthermore, the zero-salt mea- 
surement in Figure 6 is not consistent with the zero-salt data in 
Figure 5. This measurement was made at nearly the same po- 
lyelectrolyte concentration as the lowest concentration point in 
Figure 5, the main difference being the lower a value. (On the 
basis of LBL’s data,28*60 we expect no N dependence between 

(60) M. Levij, J. de Bleijser, and J. C. Leyte, Chem. Phys. Lett., 87, 34 

(61) V. Vlachy and D. Dolar, J.  Chem. Phys., 76, 2010 (1982). 
(62) F. Perrin, J .  Phys. Radium, 5,  497 (1934). 
(63) T. Odijk, J .  Polym. Sci., Polym. Phys. Ed.,  15, 477 (1977). 
(64) J. Skolnick and M. Fixman, Macromolecules, 10, 944 (1977). 
(65) S. Lifson and J. L. Jackson, J.  Chem. Phys., 36, 2410 (1962). 
(66) P. J. Flory, “Statistical Mechanics of Chain Molecules”, Interscience, 

(67) M. Abramowitz and I. A. Stegun, “Handbook of Mathematical 

(1982). 

New York, 1969. 

Functions”, Dover, New York, 1965. 

TABLE I V  Residual 23Na Quadrupole Coupling Constant, xa, for 
Na+ at Interfaces in Various Lyotropic Liquid Crystals and in 
Oriented DNAu 

-IC X a l  
system m-2 kHz ref 

C8S04Na-CloOH-H20 (lamellar phase) 
CsSO3Na-C,,,OH-H20 (lamellar phase) 
ClzS04Na-Dz0 (lamellar phase) 
C,zS04Na-Dz0 (hexagonal phase) 
Aerosol OT-HzO (lamellar phase) 
C,COONa-CloOH-HzO 

monooctanoin-H20-NaC1 

NaDNA-H20-NaCl (oriented) 

(lamellar phase) 

(lamellar phase) 

0.28 60 53, 54 
0.28 60 53 
0.38 77 55, 56 
0.28 79 55, 56 
0.25 135 57, 58 
0.19 35 53, 54 

0 4 0  53 

0.15 52 59 

“These %a values have been derived from quadrupolar line splittings 
in the 23Na NMR spectrum. According to the two-state model, the 
splitting is A = Pga/4 for planar symmetry and A = Pxa/8 for 
cylindrical symmetry.43 (These formulas pertain to polycrystalline 
samples and to samples oriented perpendicular to the magnetic field.) 
The fraction, P, of Na+ ions that reside within the perturbed region 
(extending a distance 6 from the charged surface) was calculated from 
eq 6 or its planar-symmetry equivalent and the appropriate solution 
of the Poisson-Boltzmann equation with 6 = 0.5 nm. Geometric 
parameters were taken from X-ray data (cf. references given in the 
table). 

Figures 5 and 6.) With the parameters that gave the excellent 
fit in Figure 5, but with a = 0.70, we calculate a AR2 value which 
is lower than that reported by LBL (the zero-salt point in Figure 
6) by about a factor of 2. 

The quantitative agreement between theory and experiment, 
as demonstrated in Figures 3-6, implies that the quantity xa(l 
- S2)-1/2 is essentially independent of polyion concentration, polyion 
charge, and salt concentration-at least within the investigated 
ranges of these variables. If S2 << 1, then the relaxation behavior 
is practically independent of Sz (a variation in which may then 
pass unnoticed) and no information can be extracted about the 
orientational pair correlation between the polyions. The observed 
invariance then refers to the residual 23Na quadrupole coupling 
constant, xa, averaged by local motions in the perturbed region. 

The deduced values (71 and 88 kHz) for the polyelectrolyte 
solutions fall within the range of xa values obtained from 23Na 
quadrupole line splittings in macroscopically anisotropic systems 
such as lyotropic liquid crystals. Some typical results are shown 
in Table IV. Because of the symmetry difference between a 
cylindrical and a planar interface, the corresponding residual efg’s 
are expected to differ somewhat. Thus, the additional C$D aver- 
aging at the cylindrical interface should reduce jia relative to its 
value for the corresponding flat surface. (The C$c averaging, 
brought about by counterion diffusion around the polyion rod, 
is explicitly accounted for by the factor -1 /2  in eq 27. However, 
this effect is probably quite small and obscured by differences in 
the molecular details of the interactions at  the interfaces. The 
invariance of za with respect to polyion and salt concentration 
is in accord with conclusions from s t ~ d i e s ~ ~ , ~ ~ , ~ ~ , ~ ~  of quadrupolar 
line splittings. The invariance of za with respect to polyion charge 
(or a)  fits in well with the lack of correlation between xa and the 
surface charge density, as evidenced by the data in Table IV, and 
supports our notion that the efg at an ionic nucleus is due primarily 
to local short-range interactions. 

In a subsequent paper,60 LBL report further 23Na relaxation 
measurements on NaPSS solutions at very low polyion concen- 
trations. The dramatic rise in Rzf  upon dilution (cf. Figures 3 
and 5) was found to stop at  about 10” mol dm-3 only to be 
followed, on further dilution, by an equally dramatic decline. At 
the lowest concentrations studied Gust below mol dm-3) R2+ 
has nearly merged with R2-, indicating that the effective correlation 

(68) G. Pblya, Math. Ann., 84, 149 (1921). 
(69) M. Benmouna, G. Weill, H. Benoit, and Z .  Akcasu, J.  Phys. (Paris), 

43, 1679 (1982). 
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Figure 7. Transverse relaxation rates (circles for R2+, squares for R c )  
vs. NaPSS monomolarity. Open symbols refer to data taken from ref 
60 ( N  = 170, a = 0.90, T = 25 O C ,  u0 = 66.1 MHz) and filled symbols 
refer to our data ( N  = 180, a = 0.88, T = 20 ‘C, vo = 51.9 MHz). 

time has decreased to about s. This behavior is quite 
unexpected-indeed, it cannot be rationalized within the frame- 
work of the present relaxation theory and the current knowledge 
about polyelectrolyte solutions. For this reason we undertook a 
reinvestigation of the concentration dependence of the 23Na 
transverse relaxation rates in NaPSS solution. The experimental 
conditions and method of data reduction are detailed in Appendix 
D, and in Figure 7 we compare our results with those of LBLS6O 
The agreement between the two sets of experiments is excellent, 
except for Rz+ below lo-’ mol dm-3, where our data show a 
continuing rise of R2+ with dilution. It is our belief, therefore, 
that the sharp decline in Rz+ below lo-’ mol dm-3 reported by 
LBL60 is an experimental artifact. It may be noted that a fixed 
trace amount of salt (divalent cations in particular) could reduce 
R2+ considerably at these low polyion concentrations, more so as 
the solution is diluted.’O 

There remains one experimental observation to be explained, 
namely, the dependence of ARz on the degree of polymerization, 
N ,  of the polyion. This dependence was studied by LBL28,60 for 
NaPSS solutions for which they reported large effects, e.g., ARz 
(N= 1070)/AR2(N=87) = 11 at a polyelectrolyte concentration 
of 5 X mol drnu3. Up to this point we have neglected end 
effects and calculated P and T~~~~ for an infinitely long, straight 
cylindrical cell. However, as the cell diameter, 2b, becomes of 
the same order of magnitude as the polyion contour length, L,, 
the cylindrical-cell model breaks down. This is indeed the case 
in some of LBL‘s experiments: for 5 X mol dm-3 NaPSS 
of N = 87 we find, from eq 2 and 3, L, = 22 nm and 26 = 41 
nm. 

A simple ad hoc extension of the model, to incorporate some 
effects of a finite N ,  is to put hemispherical end caps on the 
cylindrical cell. For given n, and N ,  such a cell has a smaller 
radius than an infinitely long cell. Equation 3 is replaced by 

b = [nln,(l + 4b/(3Nl))]-’/2 (42) 

In the aforementioned case the cell diameter is reduced from 41 
to 30 nm. This has very little effect on P,  but it does reduce T~~~~ 

by about a factor of 2, which, however, falls short of the observed 
factor of 11. 

To obtain a more realistic description of end effects, we must 
recognize that the hemispherical caps contribute a substantial 
fraction of the cell volume and that a diffusing counterion therefore 
has a good chance of leaving the cell through the caps rather than 
through the cylindrical surface. We shall not here embark on the 

(70) After the submission of this paper, we received confirmation from Dr. 
J. C. Leyte that the decline in R2+ below lo-’ mol dm-), as reported in ref 
60, is indeed an artifact. It appears to be due to the slow release of ions from 
the Wilmad-513-1PP sample tubes that were used (J. C. Leyte, personal 
communication). 

nontrivial numerical exercise of solving the Poisson-Boltzmann 
and Smoluchowski equations for a hemisphere-capped cylindrical 
cell. It is clear, however, that the entropic effect of the increased 
spatial dimensionality at the ends of the cell must be to reduce 
P as well as T , ~ ~ ] .  In fact, the reduction in P with decreasing N 
has recently been verified through Monte Carlo simulations.61 
Furthermore, we have performed calculations on a spherical cell, 
which is appropriate for describing the potential far from the 
polyion in the limit b >> L,, demonstrating that the effect may 
be substantial. Hence, it seems reasonable to ascribe the observed 
N dependence in AR2 to the increasing cell dimensionality (from 
2 toward 3) that accompanies dilution of a finite polyion. 

Another source of N dependence in ARz is the appearance, for 
short polyions, of an additional motional degree of freedom that 
can modulate the residual efg. A possible candidate is the end- 
over-end rotation of the entire polyion (and cell). Equation 41 
should then have Trad/(1 - Sz) replaced by an effective correlation 
time, Teff, given by 

(43) 
where we have assumed that the radial and rotational correlation 
functions decay exponentially (cf. Appendix E). If the polyion 
can be described as a rigid rod, then the rotational correlation 
time is62 

(44) 

where 9 is the shear viscosity of the solvent. For NaPSS of N 
= 87 eq 44 yields rrOt = 135 ns, to be compared with T,,, = 408 
ns ( c ,  = 5 X mol dm-3, cy = 0.90 and b from eq 42). Al- 
though this value for T,d is an upper limit (vide supra), it appears 
likely that, for such short polyions, end-over-end rotation begins 
to affect the relaxation behavior at polyion concentrations in the 
millimolar range. On progressive dilution of the polyelectrolyte 
solution, T~~~ should eventually take over completely,, thereby 
causing ARz to level off. In the experiments of Figure 7, this 
should occur at about mol dm-3. 

In the preceding we have taken the cylindrical cell to be straight; 
Le., we have assumed an infinite persistence length, Lp, for the 
polyion. A finite persistence length introduces the possibility of 
modulation of the residual, locally averaged efg through axial 
counterion diffusion along the curved polyion. In Appendix E 
we show that the effective correlation time for combined radial 
and axial counterion diffusion is given by 

where 

The persistence length of a polyion is determined by the 
electrostatic repulsion, partially screened by the counterions and 
any added salt, between segments of the polyion chain. (We 
neglect the small nonelectrostatic contribution, of order m, 
to Lp.) For a line charge whose segments interact via a Debye- 
Hiickel potential, one has in the absence of added salt63,64 

Lp = C Y / (  16nI2n,) (47) 

Recently, the electrostatic persistence length has been calculated 
also by way of numerical solutions of the nonlinear PB equation 
for a curved polyion of finite cylinder radius in the cell modello 
and in an infinite reservoir of added salt.lO,ll Whereas eq 47 does 
not contain the polyion radius a, the PB results turn out to be quite 
sensitive to this parameter. In the absence of added salt and in 
the polyion concentration range of interest here, the linear theory, 
eq 47, predicts shorter persistence lengths than does the PB 
theory.1° The discrepancy is about a factor of 3 for NaPSS (a 
= 0.5 nm) and nearly an order of magnitude for NaPAA (a = 
0.3 nm). Unfortunately, currently available experimental data 
do not allow an unambiguous assessment of the accuracy of these 
t h e o r i e ~ . ~  

In Table V we present some numerical estimates of T,,~ and 
T~~~ based on the two theories for Lp’ Judging from the PB results, 
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TABLE V: Polyion Persistence Length and Axial Counterion 
Diffusion" 

c m J  Lp 
mol the- 
dm-3 orv 
10-I DH 

PB 
DH 
PB 

PB 

PB 

10-3 DH 

10-4 DH 

Lplm 
5.3 x 10-9 

1.8 x 10-7 
5.3 x 10-7 

1.4 x 10-5 

2.5 X 
5.3 x 10-8 

1.5 X 10" 
5.3 x 10" 

Taxif  s Trad/s 

1.2 x 10-8 
2.5 X 2.8 X lo-* 
1.2 x 10" 
1.3 x 10-5 4.4 x 10-7 
1.2 x 10-4 
9.5 x 10-4 5.6 x 10" 

8.0 x 10-2 6.4 x 10-5 
1.2 x 10-2 

7etfJs  

1.3 X 
2.3 X lo-' 
3.1 x 10-7 
3.9 x 10-7 
4.9 x 10" 
5.3 x 10" 
6.1 x 10-5 
6.3 x 10-5 

a Lp was calculated from eq 47 (DH) or obtained by interpolation 
in Table I11 of ref 10 (PB). raXi and Teff were calculated from eq 46 
and 45 (with S2 = 0), respectively. T~~~ was calculated from eq 36 
and A7. Parameter values were as in Table I11 for NaPSS with a 
= 1. 

axial counterion diffusion does not significantly affect the re- 
laxation behavior a t  the polyion concentrations of interest here. 
(The reduction of T ~ ~ ,  brought about by axial diffusion, is at most 
ca. 20%, which, if neglected, would lead to an underestimation 
of by less than lo%.) Similar conclusions hold in the presence 
of added salt under the experimental conditions of Figure 6. It 
should be noted also that the values of T,,, quoted in Table V are 
lower limits (for a given Lp), since correlations between the 
counterions, which are present at a very high concentration near 
the polyion, tend to reduce the effective diffusion coefficient from 
its infinite-dilution value given in Table 111. The conclusion, then, 
is that we are justified in treating the polyion as a straight cylinder 
and to neglect the second term in eq 45. Furthermore, according 
to the PB theory, Lp > L, even for 0.1 mol dm-3 NaPSS with N 
= 87, so it is reasonable to use L, as the characteristic length in 
eq 44. 

Conclusions 
We now recapitulate the main conclusions from this study and 

indicate how the theory may be generalized. Several motional 
degrees of freedom have been considered as candidates for the 
slow efg fluctuation that gives rise to AR,,. We have found that 
the extensive AR2 data reported by LBL28 can be quantitatively 
explained by the translational diffusion of counterions from one 
polyion to another. There is thus no need, for the experimental 
conditions that we have considered, to invoke polyion reorientation 
or counterion diffusion along the curved polyion axis. Further- 
more, it appears that the relaxation behavior in these systems is 
unaffected by any changes in solution structurez8 that might 
accompany dilution or protonation of the polyion. 

The locally averaged, residual efg experienced by a counterion, 
which is the only freely adjustable parameter in the theory, was 
found to be ca. 70 kHz. This value is consistent with results from 
quadriipolar line splittings in systems with similar interfacial 
structure. The insensitivity of the residual efg to dilution and 
polyion protonation indicates that it is generated mainly by local 
short-range interactions, rather than directly by the inhomogeneous 
charge distribution. 

The present theory, while apparently sufficient for the data 
considered here, may be generalized in several respects. The two 
states may be replaced by a larger number of discrete states or 
by a continuously decaying residual efg. However, because of 
the local origin of efg (vide supra), this would not appreciably 
alter our conclusions. 

The PB mean-field diffusion model, that we have adopted, 
implies a vanishing counterion residence time at  the polyion 
surface. A finite residence time could, however, be introduced 
into the model by adding to the PB potential a short-ranged 
potential of mean force of suitable shape. Chemical specificity 
could then be parametrized via the barrier height. We emphasize 
that the present analysis does not rule out the possibility of a finite 
counterion-polyion association time, as long as it is short compared 
to the radial diffusion time, T,,+ A more detailed insight into these 

matters would require an analysis of the short-time behavior of 
the efg correlation function, as revealed by measurements of R 1  
and R2-, 

The relaxation theory developed here may be regarded as a 
limiting form of a more general theory. As the long-range 
Coulomb interaction is attenuated by reducing the polyion charge 
density or by increasing the polyion or salt concentration, the 
I'-QLc time-scale separation ceases to be a valid approximation. 
A general treatment,30 which avoids this time-scale separation, 
demonstrates that the simple result of eq 35 for J,(O) emerges 
in the limit of strong Coulomb coupling. Under conditions where 
eq 35 does not apply, the correlation function does not exhibit a 
pronounced long-time tail and so hRz should be small. However, 
a generalized version of the theory would still be needed to in- 
terpret R1 data. 

Finally, we note that certain elements of the present theory 
should be applicable, not only to solutions of linear polyelectrolytes, 
but also to solutions of other charged macromolecules and mo- 
lecular aggregates. However, the very long correlation times 
discussed here are expected to be a unique feature of isotropic 
systems with at least one very large dimension. 
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Appendix A 
Analytic Results for the Cylindrical-Cell Model. In this ap- 

pendix we present some analytical results for the distribution and 
dynamics of counterions in polyelectrolyte solutions. The results 
are valid under the model assumptions given above, with the 
further restriction that the system contains no added salt. We 
define two dimensionless quantities 

c 5 IzeUla/(2€o€,kBT) (-41) 

q E In ( b / a )  (A2) 

The equations take on slightly different forms depending on 
whether one has the low-charge case with 

('43a) c e q(l + q)-' 

c > q ( l  + q)-1 

or the high-charge case with 

(A3b) 

We shall give only the high-charge results. The corresponding 
low-charge expressions are obtained simply by replacing s by is 
everywhere. This dimensionless parameter s is the solution to the 
transcendental equation 

(1 + s2)[1 + s c o t  (sq)]-l = c (A4) 

The mean electrostatic potential is given by4-6 

When this result is inserted into eq 6 (with n, = 0), we get after 
integration 

The mean residence time in the cell is obtained by substituting 
eq A5 and 10 into eq 13, using eq 5 and evaluating one integral. 
The result is 
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7 4  5 )  = 

1 c  s(3 - 9) (1 - 3s2) 

4c 4 9  (1 + s2)2 (1 + s2)2 
sin (2s.) - - ---[ 1 + - 

(A7) 
The corresponding mean residence time for a planar cell has been 
given p r e v i o ~ s l y . ~ ~  

Appendix B 
Decomposition of the Correlation Function. In this appendix 

we give a formal derivation of the decomposition of a temporal 
autocorrelation function resulting from time-scale separation of 
the stochastic variables. Consider the temporal autocorrelation 
function of some classical observable A( t )  

G(t)  = ( A * @ )  A ( t ) )  (B1) 

Assume that the time dependence of A(t )  is due to a set, X, of 
stochastic variables. G ( t )  may then be expressed in terms of the 
joint equilibrium probability density, AX), and the joint transition 
probability density, f(X;tlXo), as 

G(t)  = l d X o f ( X o )  A*(Xo) ldXf(X;  tlXo) A(X) (B2) 

These probability densities satisfy the following normalization 
conditions: 

l d X f ( X )  = 1 (B3a) 

jdXf(X;t lXo) = 1 (B3b) 

l d X o f ( X o )  f(X;tlXo) = f(X) (B3c) 

(For stochastic variables associated with a discrete sample space, 
the integrals are replaced by sums.) 

Assume now that the set X may be divided into two subsets, 
Xf and x, such that all members of X, remain essentially constant 
over periods of time sufficient for statistical averaging of all 
members of Xf. In other words: asume the existence of a time, 
7 ,  such that 

f(X;7lx0) = AXf) 6(X, - X,O) (B4) 

The fast and slow subsets must then be statistically independent 
a t  all times, i.e. 

AX;tlXO) = f(X,;tlXP) f(Xs;tlX,o) (B5) 

lim f(X;tlXo) = f(X) (B6) 

f(X) = AX,) f ( X J  (B7) 

= Af(Xf,Xs) + As(Xs) ( B W  

Af(Xf9Xs) E A m  - A,(Xs) (B8b) 

A,(X,) = JdXff(Xf1 4x1 (B8c) 

Since 

1-m 

it follows from eq B5 that 

The quantity A is now divided into two parts as 

where 

We then insert eq B5, B7, and B8a into eq B2 and make use of 
eq B3 and B8b to obtain the desired result 

G(t)  = Gf(t) + Gdt) ( B 9 4  

where 

Gf(t) jdX,Of(X,O) JdXP f(XP) 4*(XP,X,O) x 
ldXff(Xf;tlX?) A(X,X,O) (B9b) 

GAt) E px,O As*(XsO) JdX, f(X,;tlXsO) A,(Xs) (B9c) 

Note that while Gf(t) depends onf(X:), it is independent of the 
dynamics of the slow subset. 

Appendix C 
Effect of Orientational Correlation between Polyions. This 

appendix is devoted to a derivation of an orientational correlation 
function determined by the translational diffusion of counterions 
among orientationally correlated polyions. The reduced correlation 
function, defined in eq 32 of the main text, may also be written 
G&) = 

5 S d Q e c  fcQe,) JdQLC f(QLc;tlQec) D$O(Q!C) DI?O(QLC) 
(C1) 

We define a transition as an event whereby a counterion diffuses 
from the perturbed region ( r  C a + 6) of one cell to that of a 
neighboring one. The transition probability density may then be 
written 

(C2) 

P d t )  is the probability that the counterion has undergone precisely 
N transitions at time t .  (Note that all of the N + 1 cells that have 
been visited at  time t are not necessarily distinct.) The quantity 

~N(QLC,~QLC,)  dQLCN is the probability that, after precisely N 
transitions, the counterion resides in a cell with orientation within 
dQLcN of QLc,, given that it was initially in a cell with orientation 
QLC,. Obviously,& = 6(QLc-Qtc), where Qtc =- QLco. 

We assume that the transitions are uncorrelated in time, Le., 
that they are Poisson distributed 

(C3) 

m 

f(Q~c;tlQO,c) = E Pdt) ~N(QLC,IQLC~) 
N=O 

pN(t) = ( l  /M)(t/7rad)N exp(-t/Trad) 

where T,,d is the mean time between transitions (cf. the discussion 
preceding eq 35). Combining eq Cl-C3, we get 

where 
GN E 

5JdQLcOf(QLcO) ldQLcNfdQLc~lQLco) D&(QLco) Df%QLcN) 
(C5) 

We now proceed to evaluate Gw First we note that in a ro- 
tationally invariant (isotropic) fluidfdQLc JQLG) can depend only 
on the relative orientation QcocN, i.e. 

~ N ( Q L C ~ I Q L C ~ )  ~ Q L c ,  = fdQcocN) dQcOcN (C6) 

From the closure relation for the D  element^,^' we have 

D80(QLC,) = p%k(QLC0) D20(Qcoc,) (C7) 

GN = SdQc&,fdnc&N) D&(RcOcN) (C8) 

Inserting eq C6 and C7 into eq C5 and performing the QLc 
integration, using eq 17 and the orthogonality of the D elements,5P 
we get 

We shall describe the interpolyion structure in the polyelec- 
trolyte solution entirely in terms of the orientational pair corre- 
lationf,(QLcJQLCI), or f(QCIc2), of neighboring (or nearby) cells. 
That is, we neglect triplet and higher correlations. Furthermore, 
we treat previously visited cells as statistically equivalent to all 
other cells. The sequence of transitions can then be treated as 
a Markov process, which obeys the Chapman-Kolmogorov 
equation (for N 3 1) 
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where the Ith-rank order parameter S, is defined as in eq 8. 
Inserting eq C14 into eq C13 and performing the integrations, 
making use of the orthogonality of the D elements, we get 

G N  = (SAN (CIS) 

(C16) 
Substitution into eq C4 leads to the desired result 

Gs(t) = exp[-((l - SZ)/Tradit] 

which, on combination with eq 30, yields eq 37. 

Appendix D 
Experimental Details. Sodium poly(styrenesu1fonate) (M,  = 

35000 and 88% monosulfonation according to the manufacturer) 
was obtained from Pressure Chemical Co. and used without further 
purification. The water was freshly purified through the following 
steps: mixed-bed ion-exchange resin, distillation, charcoal, and 
distillation. 

Prior to use, all glassware was soaked for 1 day in hot 7% HNO, 
and subsequently rinsed in purified water. To avoid any interfering 
NMR signa160 from sodium present in borosilicate glass, quartz 
sample tubes (10-mm 0.d.) were used. Sample volumes were 6 
cm3, including 1 cm3 of distilled D 2 0  for the locking signal. 

23Na absorption spectra were recorded at  51.91 MHz on a 
Bruker CXP 200 Fourier-transform spectrometer. An internal 
2H lock was used and the resolution was adjusted to better than 
1 Hz. The ?r/2 pulse width was 40 ps,  the dwell time 250 p ,  and 
the acquisition time 0.15 s. The number of acquisitions was 
sufficient to yield a signal-to-noise ratio of 90 or better. Over 
the recorded spectral width (2000 Hz) the amplitude of any 
base-line distortion was always less than the peak-to-peak noise. 
The temperature was kept constant at 20 O C  by the passage of 
thermostated air through the probe. 

Recorded absorption spectra were fitted to the theoretical ex- 
pressionSZ for the biexponential decay of the transverse magne- 
tization of a spin 3/2 nucleus. Six parameters were fitted: the 
two relaxation rates (Rz+ and R2-), the spectrum amplitude, the 

distance to the true base line, the resonance frequency, and a 
first-order phase correction. The latter four parameters never 
deviated significantly from the subjective input estimates. From 
each spectrum 96 data points, equidistant in frequency, were 
analyzed, spanning a range of 375 Hz symmetrically around the 
absorption maximum. Variations in the number of data points 
(48 or 96) or in the spectral width (94, 188, or 375 Hz) affected, 
in a nonsystematic way, the deduced relaxation rates by 10% or 
less. 

Appendix E 
Effect of Axial Counterion Diffusion. In this appendix we 

consider the joint correlation function for radial and axial coun- 
terion diffusion in a polyelectrolyte solution. Noting that Dbo(Q) 
= P,(cos e),  the lth-degree Legendre polynomial, we may rewrite 
eq 32 as 

GAt) = s]ldloAh) -1 P 2 ( ~ 0 ) S ' d < f ( C f l t ~ )  -1 P2(0 (El)  

where 1: 
entations in an isotropic system is 

cos OLc. The equilibrium distribution of polyion ori- 

fcn = YZ (E21 

For simplicity we assume that the DCA is valid and that the 
cells are completely uncorrelated (S, = 0). If, furthermore, the 
axial and radial motions are statistically independent, the transition 
probability density may be decomposed as 

XCtlSb) = f s x i ( C t l l 0 )  P c e d t )  +J(O[l - P c e d t ) l  (E31 

where the probability that the spin remains in the cell at time t 
is 

P ~ ~ ~ ~ ( z )  = d r = I l  (E41 

The axial transition probability density can be expressed as 

faxi(ctll0) = J m d f f ( ~ s ~ t 0 )  f ( s ; t )  (E51 

where s is the curvilinear displacement coordinate along the polyion 
axis. In the PB approximation, there is no field in the axial 
direction so that the appropriate propagator to use in eq E5 is 
that for one-dimensional free diffusion 

f(s;t) = (aDt)-' i2 exp[-s2/(4Dt)] (E6) 

The persistence length, L,, enters via the probability,f(Csl{o) 
de, of having an orientation within d l  of (after a contour dis- 
placement s, given that the orientation was co at s = 0. We shall 
take 

f(Cfll0) = !h + tw--lob) - 1/21e-s/Lp (E7) 

It is easy to verify that this distribution is consistent with the 
definitiod6 of the persistence length, which may be written 

Combining eq El-E7, performing the angular integrations, and 
making use of the orthogonality of the Legendre polynomials, we 
obtain 

and, after carrying out the displacement integral6' 

G&t) = exp[-(l/Tcell - D/L;)t] erfc [ ( D Z ) " ~ / L , ]  (E10) 

This correlation function clearly leads to a non-Lorentzian spectral 
density with a complicated frequency dependence. However, if 
we are interested only in the zero-frequency spectral density, we 
can define an effective correlation time 
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Inserting GS(t) from eq E10 and performing the integration>’ we 
get 

1 /Teff = 1 / 7ce11 f 1 / (2TceIlTmi)’” ( E W  

where we have introduced 

Tad I Lp2/(20) (E13) 

It is interesting to note that were it not for the factor exp(-t/rWu) 
connected with the radial diffusion, the integral in eq E l  1 would 
diverge. For translational diffusion in one or two dimensions the 
correlation function exhibits a long-time tail, which causes J (0 )  
to diverge. One has then left the motional narrowing regime where 

the conventional second-order perturbation theory of spin relax- 
ation is valid.25 This behavior is closely related to the well-known 
fact that a random lattice walker is certain to return to his starting 
point in one or two, but not in three, dimensions.68 

If the relaxing interaction is modulated by several statistically 
independent processes, each of which would give rise to an ex- 
ponentially decaying correlation function exp(-t/.ri), then the total 
correlation function is also exponential with 

l / s e f f  = C(1/7J (E14) 
i 

In comparison with this relation, eq E l 2  predicts that the axial 
diffusion influences Teff to a lesser extent (for T ~ ~ ,  5 T,,~,). 

Raman Spectroscopic Studies of Submillimolar Surfactant Solutions. Concentration 
Dependence of the C-H Stretching Raman Lines 
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C-H stretching Raman spectra of very dilute surfactant solutions and their concentration difference spectra were obtained 
with the aid of a highly sensitive optical multichannel analyzer detection system for decyl to tetradecyl sulfate in aqueous 
solution. By effective subtraction of the water background, profiles of the C-H spectra could be revealed even for a 0.5 
mM solution, although so far the reported data have been limited mostly to concentrations above 100 mM. Upon dilution 
in the concentration region slightly higher than the critical micelle concentration (cmc), appreciable high-frequency shifts 
of the 2860- and 2900-cm-’ bands were elucidated in the difference spectra in addition to an intensity rise around 2950 cm-I. 
The intensity rise appeared to be coupled with the upward shift of the 2860-cm-’ band irrespective of the length of the hydrocarbon 
chain. Since similar frequency shifts were also observed for dilution of CH30H with CD30D, one of the likely origins of 
the frequency shift is an intermolecular vibrational coupling of C-H bonds but is not simply a change of the surrounding 
polarity. Those features seem to be a general characteristic of surfactants upon the change from the micellar to molecular 
solvation. 

Introduction 
Micelle formation of surfactants in an aqueous solution brings 

about a discontinuous change in some molecular properties as well 
as macroscopic solution and their correlation is 
currently of spectroscopic interest. Since the Raman spectra in 
the C-H stretching region around 2840-2970 cm-’ are sensitive 
to the structure and environments of the hydrocarbon  hai in,^,^ 
presumably due to a change of Fermi resonance  condition^,^ 
Raman spectra have been extensively used to prove the membrane 
proper tie^.^-^ The technique is also expected to provide some 
structural information on molecular aggregates of surfactants such 
as alkyl carbonates and alkyl sulfates with C5-C12.10-13 So far 
the measurements have been carried out for relatively concentrated 
solutions, and an intensity rise around 2930 cm-I observed upon 
dilution was interpreted in terms of only a local polarity change 
around the hydrocarbon chain.’0*12 The spectral intensity, however, 
was insufficient to extend the measurements to more dilute so- 
lutions, lower than 100 mM; hence, there have been only a few 
data on molecular solutions of the surfactants. 

In this study, the C-H spectra of alkyl sulfates of Cl0-C4 were 
investigated to see effects of demicellization. The critical micelle 
concentrations (cmc) of these surfactants are several to thirty 
millimolar, and for the solutions below cmc a wing of the 0-H 
stretching Raman line of solvent water dominates the Raman 
spectra above 3000 cm-’. Therefore, in this study, a new technical 
development was worked out first. This enabled a long time 
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‘Tokyo Metropolitan University. 
Science, Myodaiji, Okazaki, Aichi, 444 Japan. 

accumulation of the spectra and effective subtraction of the water 
background. The C-H spectra thus obtained exhibited diffuse 
features, which are a result of heterogeneous broadening due to 
intermolecular di~ordering,~ the presence of several r ~ t a m e r s , ~  and 
homogeneous broadening due to dynamic  effect^.'^ To analyze 
such a complicated system, qualitative characterization of the 
spectral changes in terms of the peak positions, peak heights, and 
the line widths is required in the first step. Accordingly, we have 
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