

Methanol Production Technology: Todays and future Renewable Solutions

RESEARCH | TECHNOLOGY | CATALYSTS

John Bøgild Hansen - Haldor Topsøe Methanol Workshop, Lund University – March 17, 2015

We have been committed to catalytic process technology for more than 70 years

- Founded in 1940 by Dr. Haldor Topsøe
- Revenue: 700 million Euros
- 2800 employees
- Headquarters in Denmark
- Catalyst manufacture in Denmark and the USA

Topsøe's position in methanol industry

Accumulated capacity, MTPD: 19160

Number of plants:

Number of catalyst charges:

Methanol synthesis

 $> CO + 2H_2 = CH_3OH + 91 \text{ kJ/mol}$ $> CO_2 + 3H_2 = CH_3OH + H_2O + 41 \text{ kJ/mol}$

$$M = \frac{H_2 - CO_2}{CO + CO_2} = 2$$

Topsøe technologies for shale gas based methanol plants

Methanol production by one-step reforming

Methanol production by two-step reforming

Tubular reformer for methanol plant based on two-step reforming

Topsøe boiling water cooled methanol reactors at Bandar Imam, Iran

Methanol production by ATR

Projects using ATR for synthesis gas generation

- Oryx, Qatar (GTL) 34,000 BPD
- Escravos, Nigeria (GTL) 34,000 BPD
- Viva, Nigeria (methanol) 10,000 MTPD
- Sasolburg, South Africa (syngas) 2 x 215,000 Nm3/h

Statoil, Norway, 2500 MTPD Industrial bepefitence 28.8 GJ/MT => 69 % effeiciency Increased loop efficiency MK-151 FENCE™ Production dain 20% Inc Lo Catalyst activity ong 20% Inc FENCE™ -121 101

Reformers for Methanol Plant utilising CO₂

$\frac{3}{4}CH_4 + \frac{1}{2}H_2O + \frac{1}{4}CO_2 = CH_3OH$

Fuel Cell and Electrolyser

 $H_{2} + CO + O_{2} \xrightarrow{\text{SOF}} H_{2}O + CO_{2} + \text{electric energy } (\triangle G) + \text{heat } (T \triangle S)$ $HALDOR \text{ TOPSOE} \blacksquare$

The Active Site of Syngas Catalyst

 H_2/H_2O

 H_2

Cu is metallic when catalyzing: - WGS

- MeOH synthesis
- MeOH reforming

Catalyst dynamic: - Number of active sites depends on conditions

Conversion of methanol as function of CO₂ content in stoichiometric gas

Ageing of methanol catalyst in Normal and Dry Syngas

Methanol from CO₂ and Steam

Synergy between SOEC and fuel synthesis

Reactor volume and byproducts as function of CO₂ converted in SOEC

Methanol from sustainable sources BioDME Black Liqour to Green DME Demo

GreenSynFuel Project

Mass Flows in Wood to MeOH

Mass balances for Wood Gasification to MeOH

Flows in Metric Tons per day

Mass Flows in Wood + SOEC to MeOH

Mass balances for combined Wood Gasification and SOEC to MeOH

Flows in Metric Tons per day

Effciencies: Stand alone wood gasifier and gasifier plus SOEC

LHV Efficiency %	Wood Gasifier alone	Wood gasifier Plus SOEC
Methanol	59.2	70.8
District Heat	22.6	10.8
Total	81.8	81.6

The CO₂ Electrofuel Project

VOLVO COM CHEMREC Energy to Succeed

Is CO₂ electrofuels a viable and competitive technology for the Nordic countries?