
Remote control of a standard ABB robot system in real time
using the Robot Application Protocol (RAP)

Per Cederberg Magnus Olsson
Gunnar Bolmsjö

{pcederberg, molsson, gbolmsjo}@robotics.lu.se
Div. of Robotics, Lund University, P.O. Box 118, S-221 00 Lund, SWEDEN

ABSTRACT

Sensor equipped robots should benefit from using a
world model when process-dependent decisions such
as collision control have to be taken in real-time. The
world model can quite easily be represented and up-
dated in a CAR (Computer Aided Robotics) applica-
tion. A missing link, however, is the ability to remotely
control the robot motion during execution. This paper
shows that the Robot Application Protocol, RAP, which
provides an interface to standard ABB S4 robot con-
trollers, can be utilized to let a remote program control
the robot in 10 Hz, i.e. to create motion on the fly in
joint space by interacting with the running RAPID pro-
gram on the robot controller. The results are currently
used in ongoing welding experiments focused on pro-
cess control.

Keywords: robotics, remote control, real-time, sensor,
simulation, CAR

1 INTRODUCTION

The current trend towards fast product changes along
with customization and optimized design using new
materials and manufacturing processes put greater de-
mand on manufacturing operations with respect to con-
trol performance and the resulting productivity and
quality. Considering the number of robots used in in-
dustrial automation, the use of advanced sensors is still
small. One area where sensors are important is arc
welding where products based on new materials de-
crease the overall dimension (plate thickness) and in-
crease the general need for keeping tight tolerances dur-
ing welding. The use of industrial robots in this context
generally requires an integrated approach where prod-
uct data defined within a CAD (Computer Aided De-
sign) environment is taken as input and applied within
a CAR software that enables modeling, simulation and
programming of robot operations.

The Robot Application Protocol, RAP, provided by
ABB is an interface to the S4 robot controllers. Four
major groups of services are covered: general manage-
ment, variable access, file management and program
control. Despite a few cavities, including sparse doc-
umentation, the RPC (Remote Procedure Call) based

Robot Application Protocol allows a remote program
to control the robot in real-time (although with limited
bandwidth), i.e. to create motion on the fly by inter-
acting with the running RAPID program on the robot
controller.

Important work in this area is presented in [1] where
RAP is used to implement remote access to the robot
controller, including programming and monitoring in a
Windows-centered environment. Application examples
using the proposed solution are also briefly presented.
A different approach is presented in [2] where a Mat-
lab toolbox has been created which interfaces RAP and
demonstrates the setup with an ABB robot equipped
with a force/torque sensor.

This paper gives a brief overview of major RAP
functionality, limitations and applicability to situa-
tions where robot motion cannot be limited to pre-
programmed motions in a RAPID program. An oper-
ating system independent method to access a running
RAPID program is described. It differs somewhat from
the strategy used in [1, 2]. Especially sensor guided
robot systems should benefit from using RAP. We have
previously shown how to guide an ABB robot which
allowed remote control in real-time and in joint space
[3, 4, 5, 6, 7]. In the experiment, Envision, a sophis-
ticated CAR application from Delmia, controlled an
ABB IRB2000 robot with an attached ServoRobot M-
Spot laser scanner. The system performed a straight
fillet joint weld on a workpiece of which position and
orientation differed from the original nominal pose. In
ongoing research, similar experiments are planned, now
utilizing an unmodified ABB IRB2400/16, RAP and the
communication tools described in this paper. As a posi-
tive side effect of the research, a “compiler tool”, based
on RAP and developed during the evaluation process,
is described. The tool lets the user edit, compile and
run RAPID programs from a remote workstation using
emacs(a standard UNIX editor) and the developed error
formating can easily be adjusted to work together with
other editors.

2 MATERIALS AND METHODS

The experimental setup consists of a master that con-
trols a virtual and a real slave robot. The master cre-



Proceedings of the 33rd ISR (International Symposium on Robotics) October 7-11, 2002

Master 
application

Joint value creation

Virtual Slave
IRB2400/16

Simulation running 
in CAR application

Physical Slave
IRB2400/16

The running RAPID program 
is controlled via RAP/RPC

Router 
application

Joint value redirection

Figure 1: Experimental setup. Joint values created by
the master are routed to either the physical or virtual
slave. RAP/RPC-based messaging are utilized between
router and the running RAPID program on the physical
robot controller. The double directed arrow shows the
handshaking process between the slave program and
the router.

Router Application

Robot Application Protocol
(client implementation)

Remote Procedure Call Remote Procedure Call

Robot Application Protocol
(server implementation)

Network (Ethernet)

ABB S4 Controller

Figure 2: The different levels of APIs when the router
is invoked by the master application. RAP uses TCP/IP
as transport protocol.

ates joint values by interpolating between pre-defined
tag-points. Two different master applications have been
tested, Envision, a CAR application from Delmia in
which three tag-points in a triangle defined the task,
and a simple application that read pre-created joint val-
ues from a file, values that earlier was created by mov-
ing along the triangle shaped path in the CAR applica-
tion. These values are sent to the slave robot through a
router application. The router re-direct the joint values
to either the physical or virtual robot. RAP/RPC-based
messaging are utilized between router and the running
RAPID program on the physical robot controller, see
Figure 1.

The router is based on RAP which uses Sun’s RPC
and the External Data Representation (XDR) protocol
to transfer requests and replies to/from the remote robot
controller where the RAPID language is executed. The
different communication levels are shown in Figure 2
and are explained below.

2.1 RAPID language

The program consists of a number of instructions which
describe the work of the robot in a Pascal like syn-
tax. There are specific instructions for the various com-
mands, such as to move the robot or to set an output, etc.
There are three types of routines: procedures, functions
and trap routines and three kinds of data: constants,
variables and persistents. Persistents are variables that
can be reached from the outside world. Other features
in the language are: routine parameters, arithmetic and
logical expressions, automatic error handling, modular
programs and multitasking [8].

2.2 Remote Procedure Call and External Data
Representation

Remote procedure calls are a high-level communication
paradigm that allows programmers to write client/server
network applications using procedure calls that hide the
details of the underlying network. The RPC model
is similar to the local procedure call model where
the caller places arguments to a procedure in a well-
specified location (such as a result register) and trans-
fers control to the procedure. When the caller eventu-
ally regains control, it extracts the results of the pro-
cedure from the location and continues execution [9].
RPC uses XDR to establish uniform representations for
data types in order to transfer message data between
machines [10]. Sun’s RPC and XDR are freely avail-
able on numerous platforms.

2.3 Robot Application Protocol (RAP)

The Robot Application Protocol provides a set of ser-
vices that makes it possible to monitor and control the
robot from an external computer. These are grouped
into four classes: general management, variable access,
file management and program control services. The
general management services are support services for
all other services, e.g. open and close a connection to
a specified server and restart of the controller. RAP is
using named variable objects to get information from
the robot-system or affect the robot system, e.g. to read
and write RAPID defined and predefined system vari-
ables and event handling. An event in the system can
be subscribed for and as a result of that subscription,
a spontaneous message will asynchronously be sent to
the external computer when the event occurs. RAP file
management provides the functionality to access files
on the memory devices in the robot system, e.g. to open,
read, write, close, rename and delete a file [11, 12, 13].

2.4 High-level remote motion control

Normally, a RAPID program needs no invocation from
the outside world after execution has been initiated. It
is only possible to send data with RAP (as oppose to in-
structions; a limitation that has been circumvented in
[1] by introducing a switch statement in the RAPID
program where each selector defines a predefined and



Proceedings of the 33rd ISR (International Symposium on Robotics) October 7-11, 2002

possibly complex service). A special RAPID program
with a designated sequence of move instructions has to
be down-loaded to the controller. The RAPID program
needs to be carefully designed to be able to let a remote
application control the robot’s motion in a master-slave
fashion. The relevant part of the program consists of a
loop where a set of move instructions continuously are
executed as shown below.

!RAPID program executing on
!robot controller
...
PERS num pnum := -1;
PERS num p0set := 0;
...
PERS robtarget p0:=[...];
...
WHILE NOT aborted DO

WaitUntil p1set <> 0;
p1set := 0;
pnum := 0;
MoveL p0, v, z, tool0;

WaitUntil p2set <> 0;
p2set := 0;
pnum := 1;
MoveL p1, v, z, tool0;

WaitUntil p3set <> 0;
p3set := 0;
pnum := 2;
MoveL p2, v, z, tool0;

WaitUntil p0set <> 0;
p0set := 0;
pnum := 3;
MoveL p3, v, z, tool0;

ENDWHILE
...

The loop represents a circular buffer ofn robtarget
structuresp0:::pn�1 which contains position, orienta-
tion of tool center point (tcp) and configuration of robot
and external axes. The variables are declared asper-
sistent. During execution, these structures are dynami-
cally set (with some latency) with joint values provided
by the master. The router keeps track of which move
instruction that is to be executed by the robot controller,
i.e. which robtarget structure to update at a specific
time.

TheMoveLdirective refers to a via movement andv and
z denotes tcp speed and thezonedatastructure respec-
tively. Zonedata is used to specify how a position is to
be terminated, i.e. how close to the programmed posi-
tion the axes must be before moving towards the next
position. For instance, at some point of time during the
move fromp1 to p2, bothp2 andp3 must be known to
the robot control system. To be able to prepare for the
next movement a fourth point is needed.

Even though a RAP call returns synchronously, there
is no guarantee that the robtarget structure in RAPID
is updated whenwriteRobTarget()returns. Since RAP
calls that write data to RAPID variables in practice are

asynchronous, there is need for a mechanism to be cer-
tain that a particular variable holds the data previously
written to it. This handshaking problem has been re-
solved by using busy wait (a polling method) in the
RAPID code as well as in the router. Thepnum vari-
able in the running RAPID program is continuously
monitored and when it eventually becomes updated in
the RAPID program, the next robtarget structure update
is sent from the router to the robot controller.

/* Router pseudo code to handle */
/* routing of data and handshaking */
/* between master and slave */

static int pnum = -1;

int pnumChanged()
{

RAPVAR_DATA_TYPE data;

readRAPIDVar("pnum", data);
if (data.RAPVAR_DATA_TYPE_u.num != pNum) {

pNum = data.RAPVAR_DATA_TYPE_u.num;
return 1;

}
return 0;

}

void routeRobTarget(ROBTARGET robTarget)
{

/* set two pnum’s ahead, i.e. */
/* if pnum = 0, set p2set = 1 */
/* in RAPID program */
int pXset = (pnum + 2) MODULUS 4;
writeRobTarget(robTarget, pXset);
writepXset(pXset);

}

void routeJoints()
{

ROBTARGET robTarget;
JOINTVALUES joints;
do {

if (pnumChanged()) {
joints = sendJointRequestToMaster();
robTarget = kinematicCalculation(joints);
routeRobTarget(robTarget);

}
} while (!aborted);

}

void main()
{

if (compileProgram() == SUCCESS) {
connectMaster();
/* initialize first two robtargets */
initializeRobTargets();
startRAPIDExecution();
routeJoints();

}
else

displayErrors();
}

To avoid having the speed of the master exceeding the
speed of the slave, the master only sends joint values
after receiving a request message from the router. If the



Proceedings of the 33rd ISR (International Symposium on Robotics) October 7-11, 2002

master is unable to send values upon a request, the slave
robot will come to a temporary stop until the master is
ready to resume delivery of joint values.

2.5 The router as a RAP application example

Some of the strengths of RAP are shown in the support-
ing parts of the router. Besides handling the real-time
issues of routing values from master to slave, the router
provides a RAPID compile environment withinemacs,
a well known LISP based editor. By issuing a compile
command in emacs, the RAPID program will get syntax
checked and any errors will be shown with row, column
and error message in a second window. By clicking on
the error, the cursor will mark the offending line in the
RAPID program, see Figure 3.

Behind the scene, the actual compilation is performed
remotely on the robot system. By using RAP, the
RAPID program is sent to the robot controller and is
loaded and checked. The errors are saved in a log file
on the robot controller and are transferred back to the
router and displayed to the user in an user-friendly fash-
ion. If the RAPID program passes the syntax check, the
user may choose to automatically run it.

2.6 Using a virtual slave robot

When a virtual robot is used as slave it is modeled in a
CAR session and the same API (Application Program-
ming Interface) as for the physical slave is used. To
mimic the speed deficiencies caused by RAP-RAPID
interaction in the real system, latencies and speed limits
can be specified.

3 RESULTS

It is possible to control a standard robot system on-line
from a remote workstation using RAP, RPC and a care-
fully designed rapid program and handshaking routines.
A transfer limit of approximately 10 Hz has been mea-
sured using a local Ethernet-based network. An envi-
ronment for remote editing and compilation of RAPID
programs is provided as an example of benefits of RAP
utilization.

4 DISCUSSION

RAP is an add-on to the robot control system that has
been designed for monitoring purposes more than heavy
interaction with the RAPID program. As mentioned be-
fore, when a robtarget structure is sent from the router
to affect a variable in the RAPID program, the RAP
call responds (with no error) at some time before the
variable in the RAPID program is updated and useful
in a move instruction. In practice, neither RAP nor
RAPID give any choice but to use busy wait (a polling
method) to synchronize the router and the RAPID pro-
gram. Based on these prerequisites, a transfer limit of
approximately 10 Hz has been measured using our lo-
cal network. TheSCWriteRAPID instruction can be

used to send both single and array variables from the
RAPID program to the client. To receive the values, the
client has to act as a RPC server, either as a thread or as
a separate application. However, since the instruction
itself is asynchronous, it is not suited for handshaking
purposes.

RAPID executes in a low prioritized thread on the ABB
robot controller. Latencies measured as time between
data request and response varies dependent of the task
the robot currently handles. Latencies has not been
specifically measured in this paper but [1] reports 15
to 20 ms on average.

It is for some reason not possible to send jointtarget
structure values directly using RAP even though the
structure is defined in the RAPID language. As a work
around, a kinematic model of the robot and some simple
calculations to represent the rotation with quarternions,
easily create a robtarget structure from joint values. A
second method could be to define a jointtarget structure
in RAPID where the different joint values are simple
floating point variables, and make a RAP call for each
of the individual variables. A third method might be
to define an array of floats in RAPID and use the array
indices as the joint values in the jointtarget structure.
This would be advantageous to the second method in
that only one RAP call would be needed to send all six
array values. In this paper the first method has been
used in order to minimize the number of RAP calls and
to add as little overhead as possible to the RAP server
and to the RAPID interpreter.

Because of the precise timing needed in the handshak-
ing process, the choice of master becomes important.
The master has to be able to provide new joint values
when asked for by the router. Since a CAR applica-
tion normally defines simulated time, it has turned out
to be difficult to correlate simulated time with “real”
time provided by the robot controller. As a result, the
physical robot’s lag behind the virtual increased during
motion. The problem was eliminated using the simple
master which provided joint values timely. Needless to
say, the difference between the router and the master is
purely conceptual; they could of course be built as one
application.

Even if motion has been in focus in this paper, RAP of-
fers a wide range of other services such as reading and
writing of several variables using only one RAP call,
advanced file management services and device access.
Some services are missing, however. As mentioned be-
fore, the RAPID variables of jointtarget structure type
cannot be read or written without a workaround. Also
mentioned, the asynchronous RAPID functionSCWrite
cannot be used for effective handshaking purposes. Fur-
thermore, [12] states that the function might fail if the
SCWritemessages comes “so close that they cannot be
sent to the external computer”, a characteristic that does
not relate well with performance. A more reliable write
function would be helpful. A third desirable function
would be an atomic test and set. Then the two lines



Proceedings of the 33rd ISR (International Symposium on Robotics) October 7-11, 2002

Figure 3: The router provides an emacs compile environment which allows the user to remotely edit and execute RAPID
programs (the program in the figure is just provided as an example, please disregard from details). After an unsuccessful
compile, the error is shown in a second window. By clicking on the error, the cursor will mark the offending line in the
RAPID program.



Proceedings of the 33rd ISR (International Symposium on Robotics) October 7-11, 2002

...
WaitUntil p1set <> 0;
p1set := 0;
...

could be exchanged to one safe function where a single
RAPID operation reads, tests and writes a variable.

In the ongoing experiments with a sensor guided robot,
a master has been developed which includes parts of the
virtual model needed for motion. This simplified nom-
inal world model is exported from the CAR application
before execution. During execution, other applications
may subscribe to dynamic changes to the virtual model
caused by sensor information. A subscribing CAR ap-
plication should for instance be able to use its sophis-
ticated world model to monitor changes, perform colli-
sion checks and propose error recovery strategies.

5 CONCLUSIONS

By using the RAP based router and a carefully de-
signed RAPID program, it has been proven possible to,
in real-time and from a remote computer, control mo-
tion in a standard robot system. The update rate of the
RAPID program via RAP has been measured to 10 Hz.
The solution should be of value in situations when it
is desired to control the robot without having to rely
on pre-programmed motion or actions such as for in-
stance when non-trivial sensors are used. RAP has also
proved to allow remote editing, compilation and load-
ing of robot programs.

ACKNOWLEDGMENTS

The authors would like express our gratitude to our col-
leagues Mr. Mathias Haage and Dr. Klas Nilsson, De-
partment of Computer Science, Dr. Anders Robertsson,
Department of Automatic Control, all at Lund Univer-
sity and to Dr. Torgny Brogårdh and Mr. Valter Maco-
vac at ABB Robotics, Västerås, Sweden.

REFERENCES

[1] J. N. Pires and J. M. G. S. da Costa, “Object-
oriented and distributed approach for program-
ming robotic manufacturing cells,”IFAC Journal
Robotics and Computer Integrated Manufactur-
ing, no. 16, pp. 29–42, 2000.

[2] J. N. Pires, “Interfacing robotic and automation
equipment with Matlab,”IEEE Automation and
Robotics Magazine, September 2000.

[3] P. Cederberget al., “Virtual triangulation sensor
development, behavior simulation and CAR inte-
gration applied to robotic arc-welding,”Submitted
to Journal of Intelligent & Robotic Systems 2001.
Accepted, waiting for publication, 2001.

[4] M. Olsson, Simulation and execution of au-
tonomous robot systems. PhD thesis, Division of

Robotics, Department of Mechanical Engineering,
Lund University, 2002.

[5] K. Nilsson,Industrial Robot Programming. Lund,
Sweden: Dept. of Automatic Control, Lund Uni-
versity, 1996. Ph.D. Thesis.

[6] “QuickTime movie of virtual system, see our
website http://www.robotics.lu.se,” Division of
Robotics, Lund University, 2001.

[7] “The thinking machine, part 3 (video record-
ing),” in Autonomous Industrial Robotics.
Demonstration performed by Magnus Olsson.
Also published and narrated in English on
http://www.robotics.lu.se, NUTEK, 1999.

[8] “ABB Rapid Reference Version 3.2, RAPID Sum-
mary,” ABB Flexible Automation.

[9] “IRIX Network Programming Guide,” SGI.

[10] “AIX Version 4.3 Communications Programming
Concepts,” IBM, 1997.

[11] “ABB RAP Protocol Specification 1.05,” ABB
Flexible Automation.

[12] “ABB RAP Service Specification 1.05,” ABB
Flexible Automation.

[13] “ABB Ethernet Services 3.0,” ABB Flexible Au-
tomation.


