Solid Oxide Fuel Cells

(SOFCs)

Fuel Cell Technology
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Why SOFCs

e Employ Solid State Electrolyte;

e Corrosion Reduced;

e \Water Management Eliminated,;

e Very Thin Layers/Cell Components Possible;

e Fuel Flexibility High;

e Precious Metal Electrocatalysts not needed

Internal Reforming and Combined Heat/

Power Cycles Possible, etc....
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|ntroduction

* The electrochemical reactions proceed more
quickly at high temperatures, and noble metal
catalysts are often not needed,;

* The temperature (cell/exhaust gas) is high
enough to facilitate the extraction of hydrogen;

e High temperature fuel cells enable combined
> heat and power (CHP) system”;

e High temperature exhaust gas can be used
to run a gas turbine-bottoming cycle.

Solid Oxide Fuel Cells (SOFCs), Intermediate
Temperature (IT-)SOFCs to be discussed.
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Cell Components

e Electrolytes and interconnects must be
chemically, morphologically, and dimensionally
stable for both oxidizing and reducing

conditions:

» The components must be chemically stable in

order to limit chemical interactions with other cell
components;

» No components may exhibit any significant
change in volume between room temperature and
the fabrication temperature;
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Conductivities or Resistivities

e The resistivities of typical cell components at 1,000°C
are 10 ohm-cm (ionic) for the electrolyte (8-10 mol% Y,O,
doped ZrO,), 1 ohm-cm (electronic) for the cell
Interconnect (doped LaCrO3), 0.01 ohm-cm (electronic)
for the cathode (doped LaMnO3), and 3 x 10° ohm-cm
(electronic) for the anode (Ni/ZrO2 cermet).

e |t is apparent that the solid oxide electrolyte is worst
conductive of the cell components, followed by the cell
Interconnect.
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SOFC Electrodes and Interconnects

Anode: a porous cermet made of metallic nickel (Ni) and a
YSZ skeleton; The zirconia serves to inhibit sintering of the
metal particles and provides a comparable thermal
expansion coefficient. ]

/f,,,Hgo
«Cathode: strontium-doped
lanthanum manganite ] —
(La0.84Sr0.16)MnQO3,a p-type _

semiconductor. pure electronic

conductor
Three-phase
boundary
region

Interconnect: metals (stainless steels) or alloys to be
compatible in terms of chemical stability and mechanical
compliance (similar thermal expansion coefficients).




SOFC Electrolyte

*An oxide ion-conducting ceramic material as the electrolyte
with only two phases (gas and solid) processes;

*Both hydrogen and carbon monoxide can act as fuels;

Product water as steam, Carbon monoxide fuel
Hydrogen fuel available for steam

reformation of fuel

O- ions throughelectrolyte Load O~ions through\glectrolyte Load
Cathode O, + 4e- S~20- / Cathode O, + 4e” }"20= /
A4 | A A [
Electrons flow round Electrons flow round

the external circuit the external circuit

Oxygen, usually from the air Oxygen, usually from the air

*Originally zirconia (ZrO,) as an oxygen ion conductor, then
zirconia stabilised with the addition of a small percentage
10 mole%) of yttria (Y,0;), so called YSZ.
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Films of oxide electrolytes can be reliably produced using cheap,
conventional ceramic fabrication routes at thicknesses down to
15pum. The specific conductivity of the electrolyte must exceed
10-S/cm. This is achieved at 500 °C for the electrolyte S
Ce, sGd, ;0 o5, and at 700 °C for the electrolyte 5
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® Two different design configurations are being developed
for solid oxide fuel cells, motivated by 1) considerations of
how to seal the anode and cathode compartments, 2) ease
of manufacturing, and 3) minimizing losses due to electric
resistance.

e The two principal types are tubular and planar. The
tubular SOFC has undergone development since the late
1950s. Operating between 900-1,000°C, the long tubes
have relatively high electrical resistance but are simple to
seal. Some tubular designs eliminate the need for seals and
allow for thermal expansion. Several tubular units are
presently operating in the field, with tens of thousands of
hours of demonstrated operation.

e The planar one is composed of flat, thin ceramic plates. It
operates at 800°C or even below. Ultra-thin electrode
/electrolyte sheets have low electrical resistance in orders;

to achieve high efficiency. Operation at temperatu QQS
than the tubular SOFC enables less exotic materi §§f £y e
construction, thus cost Sa&\wa# gechnology = Jﬁ {P 7
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Various Structures of SOFCs (Tubular
and Planar)
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Tubular SOFC Designs

e Tubular SOFCs: the cathode tube is fabricated first with a
porosity of 30 - 40% to permit rapid transport of the reactant
and product gases to the cathode/ electrolyte interface where
the electrochemical reactions occur. The electrolyte is applied
to the cathode tubes by electrochemical vapor deposition
(EVD). In this technique, the appropriate metal chloride vapor
Is introduced on one side of the tube surface, and O,/H,0 is

Introduced on the other side.
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Cross Section of Tubular Cells
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*Fuel flows along the outside of the
tube, air is fed through a thin
alumina air supply tube located
centrally. Heat generated within
the cell brings the air up to the
operating temperature. The air
then flows through the fuel cell
back-up to the open end.

*Air and unused fuel from the
anode exhaust mix are instantly
combusted and so the cell exit is
above 1000°C. This combustion
provides additional heat to preheat
the air supply tube.

*Thus the tubular SOFC does not
require high-temperature seals.

Fuel Ce
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Seal-less, high
Internal ohmic losses

A typical SOFC stack
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Air and Fuel Delivery
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Siemens Westinghouse Tubular Cell
Performance at 1,000°C (2.2 cm
diameter,150 cm active length)
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The high power density SOFC (Siemens)
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Planar SOFC Designs

e In the planar configuration, the anode,
electrolyte, and cathode form thin, flat layers that
are sintered together, and then separated by

bipolar plates similar to the design of other types
of fuel cells. The plates can be either rectangular,
square, circular, or segmented in series and can
be manifolded externally or internally. Many §
planar designs use metallic bipolar plates and G 7=
operate at a lower temperature than the all- 5 b
ceramic tubular design.

e The planar SOFCs can be categorized on the
basis of the supporting component of the
cathode/ electrolyte/anode structure. Two
approaches are at hand, i1.e., electrode- or
electrolyte-supported cefig®! echnology




Planar SOFC with a Cross-Flow Stack Configuration
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Planar SOFCs

e Problems?

A recent development has been to use a bipolar
interconnect made of ferritic stainless steel; this cannot
be used in the manufacture higher-temperature fuel
cells, because most steels oxidize quite readily at
temperatures above 800°C. To limit corrosion on the air
side, the operating temperature of the planar SOFC
must be maintained below 800°C. However, the
conductivity of the electrolyte decreases with falling
temperature.

- Reduced Temperature SOFCs:

Dropping the Operating Temperature to

SOECs.
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ITSOFC design options

e There are two options for mitigating decreased
performance. The well-established YSZ electrolyte
can be used at temperatures as low as 700°C
when the thickness is about 15 micrometers.

e To go to even lower temperatures, more

conductive electrolytes such as lanthanum gallate,
scandium doped zirconia, or gadolinium doped
ceria (GDC) can be used. Also, at significantly-
reduced operating temperature, the lanthanum
manganite cathode material becomes kinetic rate
limiting to the point that it must be modified or
replaced.
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Anode-Supported ITSOFCs

e A newer stack configuration is the anode-supported
concept. This design has a thick anode, which acts as
the supporting structure. The electrolyte and cathode
are very thin in comparison.

e These stacks operate within a temperature range of
/700 — 800°C. Each individual cell is "sandwiched” or
held between metal interconnecting plates that act as
air and fuel flow channels as well as the electrical
connection between each cell in a stack.

e The advantage of this concept is the fact that metals
are more durable than ceramics. By using the metalllc
bipolar plate as the main load-bearing components

the stack, the fracture resistance and thermal <é rj

tolerance might be impERY&Asmooy 3

Q zzm\ =




Intermediate Temperaute (IT) SOFCs

e Critical Issues : Reduced Temperature Causes
Lower Electrolyte lonic Conductivity and
Electrode Catalytic Activity; Asr <0.15 Qcm?.

electrolyte

e Option 1: For Conventional ¥SZ Materials, Thinner
Electrolyte and Electrode-Supported Structure Employed.

V.U <




ITSOFCs

* Option 2: New Ceramic Materials Employed for
Electrolyte and/or Electrodes. For example:

Tempera- Conductivi Thickness

ture (°C) -ty (Scm™!) T3 Structures

Materials

Thin

oL (00 - Electrolyte

Samarium

Doped Thick
Ceriaand 00700 500 Electrolyte

Li,SO,

4
S
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Performance of ITSOFC at Reduced
Temperatures
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